-
Notifications
You must be signed in to change notification settings - Fork 6
/
resnet.py
589 lines (521 loc) · 25.5 KB
/
resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains definitions for Residual Networks.
Residual networks ('v1' ResNets) were originally proposed in:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Deep Residual Learning for Image Recognition. arXiv:1512.03385
The full preactivation 'v2' ResNet variant was introduced by:
[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Identity Mappings in Deep Residual Networks. arXiv: 1603.05027
The key difference of the full preactivation 'v2' variant compared to the
'v1' variant in [1] is the use of batch normalization before every weight layer
rather than after.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
_BATCH_NORM_DECAY = 0.997
_BATCH_NORM_EPSILON = 1e-5
DEFAULT_VERSION = 2
DEFAULT_DTYPE = tf.float32
CASTABLE_TYPES = (tf.float16,)
ALLOWED_TYPES = (DEFAULT_DTYPE,) + CASTABLE_TYPES
################################################################################
# Convenience functions for building the ResNet model.
################################################################################
def batch_norm(inputs, training, data_format):
"""Performs a batch normalization using a standard set of parameters."""
# We set fused=True for a significant performance boost. See
# https://www.tensorflow.org/performance/performance_guide#common_fused_ops
return tf.compat.v1.layers.batch_normalization(
inputs=inputs, axis=1 if data_format == 'channels_first' else 3,
momentum=_BATCH_NORM_DECAY, epsilon=_BATCH_NORM_EPSILON, center=True,
scale=True, training=training, fused=True)
def fixed_padding(inputs, kernel_size, data_format):
"""Pads the input along the spatial dimensions independently of input size.
Args:
inputs: A tensor of size [batch, channels, height_in, width_in] or
[batch, height_in, width_in, channels] depending on data_format.
kernel_size: The kernel to be used in the conv2d or max_pool2d operation.
Should be a positive integer.
data_format: The input format ('channels_last' or 'channels_first').
Returns:
A tensor with the same format as the input with the data either intact
(if kernel_size == 1) or padded (if kernel_size > 1).
"""
pad_total = kernel_size - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
if data_format == 'channels_first':
padded_inputs = tf.pad(tensor=inputs,
paddings=[[0, 0], [0, 0], [pad_beg, pad_end],
[pad_beg, pad_end]])
else:
padded_inputs = tf.pad(tensor=inputs,
paddings=[[0, 0], [pad_beg, pad_end],
[pad_beg, pad_end], [0, 0]])
return padded_inputs
def conv2d_fixed_padding(inputs, filters, kernel_size, strides, data_format):
"""Strided 2-D convolution with explicit padding."""
# The padding is consistent and is based only on `kernel_size`, not on the
# dimensions of `inputs` (as opposed to using `tf.layers.conv2d` alone).
if strides > 1:
inputs = fixed_padding(inputs, kernel_size, data_format)
return tf.compat.v1.layers.conv2d(
inputs=inputs, filters=filters, kernel_size=kernel_size, strides=strides,
padding=('SAME' if strides == 1 else 'VALID'), use_bias=False,
kernel_initializer=tf.compat.v1.variance_scaling_initializer(),
data_format=data_format)
################################################################################
# ResNet block definitions.
################################################################################
def _building_block_v1(inputs, filters, training, projection_shortcut, strides,
data_format):
"""A single block for ResNet v1, without a bottleneck.
Convolution then batch normalization then ReLU as described by:
Deep Residual Learning for Image Recognition
https://arxiv.org/pdf/1512.03385.pdf
by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Dec 2015.
Args:
inputs: A tensor of size [batch, channels, height_in, width_in] or
[batch, height_in, width_in, channels] depending on data_format.
filters: The number of filters for the convolutions.
training: A Boolean for whether the model is in training or inference
mode. Needed for batch normalization.
projection_shortcut: The function to use for projection shortcuts
(typically a 1x1 convolution when downsampling the input).
strides: The block's stride. If greater than 1, this block will ultimately
downsample the input.
data_format: The input format ('channels_last' or 'channels_first').
Returns:
The output tensor of the block; shape should match inputs.
"""
shortcut = inputs
if projection_shortcut is not None:
shortcut = projection_shortcut(inputs)
shortcut = batch_norm(inputs=shortcut, training=training,
data_format=data_format)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=3, strides=strides,
data_format=data_format)
inputs = batch_norm(inputs, training, data_format)
inputs = tf.nn.relu(inputs)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=3, strides=1,
data_format=data_format)
inputs = batch_norm(inputs, training, data_format)
inputs += shortcut
inputs = tf.nn.relu(inputs)
return inputs
def _building_block_v2(inputs, filters, training, projection_shortcut, strides,
data_format):
"""A single block for ResNet v2, without a bottleneck.
Batch normalization then ReLu then convolution as described by:
Identity Mappings in Deep Residual Networks
https://arxiv.org/pdf/1603.05027.pdf
by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Jul 2016.
Args:
inputs: A tensor of size [batch, channels, height_in, width_in] or
[batch, height_in, width_in, channels] depending on data_format.
filters: The number of filters for the convolutions.
training: A Boolean for whether the model is in training or inference
mode. Needed for batch normalization.
projection_shortcut: The function to use for projection shortcuts
(typically a 1x1 convolution when downsampling the input).
strides: The block's stride. If greater than 1, this block will ultimately
downsample the input.
data_format: The input format ('channels_last' or 'channels_first').
Returns:
The output tensor of the block; shape should match inputs.
"""
shortcut = inputs
inputs = batch_norm(inputs, training, data_format)
inputs = tf.nn.relu(inputs)
# The projection shortcut should come after the first batch norm and ReLU
# since it performs a 1x1 convolution.
if projection_shortcut is not None:
shortcut = projection_shortcut(inputs)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=3, strides=strides,
data_format=data_format)
inputs = batch_norm(inputs, training, data_format)
inputs = tf.nn.relu(inputs)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=3, strides=1,
data_format=data_format)
return inputs + shortcut
def _bottleneck_block_v1(inputs, filters, training, projection_shortcut,
strides, data_format, batch_norm_flag=True):
"""A single block for ResNet v1, with a bottleneck.
Similar to _building_block_v1(), except using the "bottleneck" blocks
described in:
Convolution then batch normalization then ReLU as described by:
Deep Residual Learning for Image Recognition
https://arxiv.org/pdf/1512.03385.pdf
by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Dec 2015.
Args:
inputs: A tensor of size [batch, channels, height_in, width_in] or
[batch, height_in, width_in, channels] depending on data_format.
filters: The number of filters for the convolutions.
training: A Boolean for whether the model is in training or inference
mode. Needed for batch normalization.
projection_shortcut: The function to use for projection shortcuts
(typically a 1x1 convolution when downsampling the input).
strides: The block's stride. If greater than 1, this block will ultimately
downsample the input.
data_format: The input format ('channels_last' or 'channels_first').
Returns:
The output tensor of the block; shape should match inputs.
"""
shortcut = inputs
if projection_shortcut is not None:
shortcut = projection_shortcut(inputs)
if batch_norm_flag:
shortcut = batch_norm(inputs=shortcut, training=training,
data_format=data_format)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=1, strides=1,
data_format=data_format)
if batch_norm_flag:
inputs = batch_norm(inputs, training, data_format)
inputs = tf.nn.relu(inputs)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=3, strides=strides,
data_format=data_format)
if batch_norm_flag:
inputs = batch_norm(inputs, training, data_format)
inputs = tf.nn.relu(inputs)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=4 * filters, kernel_size=1, strides=1,
data_format=data_format)
if batch_norm_flag:
inputs = batch_norm(inputs, training, data_format)
inputs += shortcut
inputs = tf.nn.relu(inputs)
return inputs
def _bottleneck_block_v2(inputs, filters, training, projection_shortcut,
strides, data_format, batch_norm_flag=True):
"""A single block for ResNet v2, with a bottleneck.
Similar to _building_block_v2(), except using the "bottleneck" blocks
described in:
Convolution then batch normalization then ReLU as described by:
Deep Residual Learning for Image Recognition
https://arxiv.org/pdf/1512.03385.pdf
by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Dec 2015.
Adapted to the ordering conventions of:
Batch normalization then ReLu then convolution as described by:
Identity Mappings in Deep Residual Networks
https://arxiv.org/pdf/1603.05027.pdf
by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Jul 2016.
Args:
inputs: A tensor of size [batch, channels, height_in, width_in] or
[batch, height_in, width_in, channels] depending on data_format.
filters: The number of filters for the convolutions.
training: A Boolean for whether the model is in training or inference
mode. Needed for batch normalization.
projection_shortcut: The function to use for projection shortcuts
(typically a 1x1 convolution when downsampling the input).
strides: The block's stride. If greater than 1, this block will ultimately
downsample the input.
data_format: The input format ('channels_last' or 'channels_first').
Returns:
The output tensor of the block; shape should match inputs.
"""
shortcut = inputs
inputs = batch_norm(inputs, training, data_format)
inputs = tf.nn.relu(inputs)
# The projection shortcut should come after the first batch norm and ReLU
# since it performs a 1x1 convolution.
if projection_shortcut is not None:
shortcut = projection_shortcut(inputs)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=1, strides=1,
data_format=data_format)
inputs = batch_norm(inputs, training, data_format)
inputs = tf.nn.relu(inputs)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=filters, kernel_size=3, strides=strides,
data_format=data_format)
inputs = batch_norm(inputs, training, data_format)
inputs = tf.nn.relu(inputs)
inputs = conv2d_fixed_padding(
inputs=inputs, filters=4 * filters, kernel_size=1, strides=1,
data_format=data_format)
return inputs + shortcut
def block_layer(inputs, filters, bottleneck, block_fn, blocks, strides,
training, name, data_format, batch_norm_flag=True):
"""Creates one layer of blocks for the ResNet model.
Args:
inputs: A tensor of size [batch, channels, height_in, width_in] or
[batch, height_in, width_in, channels] depending on data_format.
filters: The number of filters for the first convolution of the layer.
bottleneck: Is the block created a bottleneck block.
block_fn: The block to use within the model, either `building_block` or
`bottleneck_block`.
blocks: The number of blocks contained in the layer.
strides: The stride to use for the first convolution of the layer. If
greater than 1, this layer will ultimately downsample the input.
training: Either True or False, whether we are currently training the
model. Needed for batch norm.
name: A string name for the tensor output of the block layer.
data_format: The input format ('channels_last' or 'channels_first').
Returns:
The output tensor of the block layer.
"""
# Bottleneck blocks end with 4x the number of filters as they start with
filters_out = filters * 4 if bottleneck else filters
def projection_shortcut(inputs):
return conv2d_fixed_padding(
inputs=inputs, filters=filters_out, kernel_size=1, strides=strides,
data_format=data_format)
# Only the first block per block_layer uses projection_shortcut and strides
inputs = block_fn(inputs, filters, training, projection_shortcut, strides,
data_format, batch_norm_flag=batch_norm_flag)
for _ in range(1, blocks):
inputs = block_fn(inputs, filters, training, None, 1, data_format, batch_norm_flag=batch_norm_flag)
return tf.identity(inputs, name)
class ResNetArchitecture(object):
"""Base class for building the Resnet Model."""
def __init__(self,
num_classes, # num_output
loss_function=None,
disassembling_function=None,
block_sizes=[3, 4, 6, 3],
block_strides=[1, 2, 2, 2],
first_pool_size=3,
first_pool_stride=2,
conv_stride=2,
kernel_size=7,
num_filters=64,
resnet_size=50,
bottleneck=True,
resnet_version=DEFAULT_VERSION,
data_format='channels_first',
dtype=DEFAULT_DTYPE,
avg_pool=True,
batch_norm_flag=True,
reuse=False,
shallow_reduction=False,
dropout=False):
"""Creates a model for classifying an image.
Args:
resnet_size: A single integer for the size of the ResNet model.
bottleneck: Use regular blocks or bottleneck blocks.
num_classes: The number of classes used as labels.
num_filters: The number of filters to use for the first block layer
of the model. This number is then doubled for each subsequent block
layer.
kernel_size: The kernel size to use for convolution.
conv_stride: stride size for the initial convolutional layer
first_pool_size: Pool size to be used for the first pooling layer.
If none, the first pooling layer is skipped.
first_pool_stride: stride size for the first pooling layer. Not used
if first_pool_size is None.
block_sizes: A list containing n values, where n is the number of sets of
block layers desired. Each value should be the number of blocks in the
i-th set.
block_strides: List of integers representing the desired stride size for
each of the sets of block layers. Should be same length as block_sizes.
resnet_version: Integer representing which version of the ResNet network
to use. See README for details. Valid values: [1, 2]
data_format: Input format ('channels_last', 'channels_first', or None).
If set to None, the format is dependent on whether a GPU is available.
dtype: The TensorFlow dtype to use for calculations. If not specified
tf.float32 is used.
Raises:
ValueError: if invalid version is selected.
"""
self._disassembling_function = disassembling_function
self._loss_function = loss_function
self.resnet_size = resnet_size
if not data_format:
data_format = (
'channels_first' if tf.test.is_built_with_cuda() else 'channels_last')
self.resnet_version = resnet_version
if resnet_version not in (1, 2):
raise ValueError(
'Resnet version should be 1 or 2. See README for citations.')
self.bottleneck = bottleneck
if bottleneck:
if resnet_version == 1:
self.block_fn = _bottleneck_block_v1
else:
self.block_fn = _bottleneck_block_v2
else:
if resnet_version == 1:
self.block_fn = _building_block_v1
else:
self.block_fn = _building_block_v2
if dtype not in ALLOWED_TYPES:
raise ValueError('dtype must be one of: {}'.format(ALLOWED_TYPES))
self.data_format = data_format
self.num_classes = num_classes
self.num_filters = num_filters
self.kernel_size = kernel_size
self.conv_stride = conv_stride
self.first_pool_size = first_pool_size
self.first_pool_stride = first_pool_stride
self.block_sizes = block_sizes
self.block_strides = block_strides
self.dtype = dtype
self.pre_activation = resnet_version == 2
self.avg_pool=avg_pool
self.batch_norm_flag=batch_norm_flag
self.reuse = reuse
self.shallow_reduction=shallow_reduction
self.dropout=dropout
if self.shallow_reduction:
self.block_sizes = [3, 4, 6]
self.block_strides = [1, 2, 2]
def make_graph(self, input, training, additional_features=None, return_features=False, debug=False):
#tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, tf.print("resnet input:", input, summarize=-1))
encoding = self.build_encoder(input, training, additional_features=additional_features, return_features=return_features, debug=debug) # batch,num_classes
if return_features:
return encoding
#tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, tf.print("encoding:", encoding, summarize=-1))
encoding = tf.reshape(encoding, [encoding.shape[0], encoding.shape[1], 1, 1])
return encoding
def _custom_dtype_getter(self, getter, name, shape=None, dtype=DEFAULT_DTYPE,
*args, **kwargs):
"""Creates variables in fp32, then casts to fp16 if necessary.
This function is a custom getter. A custom getter is a function with the
same signature as tf.get_variable, except it has an additional getter
parameter. Custom getters can be passed as the `custom_getter` parameter of
tf.variable_scope. Then, tf.get_variable will call the custom getter,
instead of directly getting a variable itself. This can be used to change
the types of variables that are retrieved with tf.get_variable.
The `getter` parameter is the underlying variable getter, that would have
been called if no custom getter was used. Custom getters typically get a
variable with `getter`, then modify it in some way.
This custom getter will create an fp32 variable. If a low precision
(e.g. float16) variable was requested it will then cast the variable to the
requested dtype. The reason we do not directly create variables in low
precision dtypes is that applying small gradients to such variables may
cause the variable not to change.
Args:
getter: The underlying variable getter, that has the same signature as
tf.get_variable and returns a variable.
name: The name of the variable to get.
shape: The shape of the variable to get.
dtype: The dtype of the variable to get. Note that if this is a low
precision dtype, the variable will be created as a tf.float32 variable,
then cast to the appropriate dtype
*args: Additional arguments to pass unmodified to getter.
**kwargs: Additional keyword arguments to pass unmodified to getter.
Returns:
A variable which is cast to fp16 if necessary.
"""
if dtype in CASTABLE_TYPES:
var = getter(name, shape, tf.float32, *args, **kwargs)
return tf.cast(var, dtype=dtype, name=name + '_cast')
else:
return getter(name, shape, dtype, *args, **kwargs)
def _model_variable_scope(self):
"""Returns a variable scope that the model should be created under.
If self.dtype is a castable type, model variable will be created in fp32
then cast to self.dtype before being used.
Returns:
A variable scope for the model.
"""
if self.reuse:
return tf.compat.v1.variable_scope('resnet_model', reuse=tf.AUTO_REUSE,
custom_getter=self._custom_dtype_getter)
else:
return tf.compat.v1.variable_scope('resnet_model',
custom_getter=self._custom_dtype_getter)
def build_encoder(self, inputs, training, additional_features=None, return_features=False, debug=False):
"""Add operations to classify a batch of input images.
Args:
inputs: A Tensor representing a batch of input images.
training: A boolean. Set to True to add operations required only when
training the classifier.
Returns:
A logits Tensor with shape [<batch_size>, self.num_classes].
"""
with self._model_variable_scope():
# if self.data_format == 'channels_first':
# # Convert the inputs from channels_last (NHWC) to channels_first (NCHW).
# # This provides a large performance boost on GPU. See
# # https://www.tensorflow.org/performance/performance_guide#data_formats
# inputs = tf.transpose(a=inputs, perm=[0, 3, 1, 2])
inputs = conv2d_fixed_padding(
inputs=inputs, filters=self.num_filters, kernel_size=self.kernel_size,
strides=self.conv_stride, data_format=self.data_format)
inputs = tf.identity(inputs, 'initial_conv')
print('initial_conv:', inputs.shape)
# We do not include batch normalization or activation functions in V2
# for the initial conv1 because the first ResNet unit will perform these
# for both the shortcut and non-shortcut paths as part of the first
# block's projection. Cf. Appendix of [2].
if self.resnet_version == 1:
if self.batch_norm_flag:
inputs = batch_norm(inputs, training, self.data_format)
inputs = tf.nn.relu(inputs)
if self.first_pool_size:
inputs = tf.compat.v1.layers.max_pooling2d(
inputs=inputs, pool_size=self.first_pool_size,
strides=self.first_pool_stride, padding='SAME',
data_format=self.data_format)
inputs = tf.identity(inputs, 'initial_max_pool')
print('initial_max_pool:', inputs.shape)
for i, num_blocks in enumerate(self.block_sizes):
num_filters = self.num_filters * (2**i)
inputs = block_layer(
inputs=inputs, filters=num_filters, bottleneck=self.bottleneck,
block_fn=self.block_fn, blocks=num_blocks,
strides=self.block_strides[i], training=training,
name='block_layer{}'.format(i + 1), data_format=self.data_format, batch_norm_flag=self.batch_norm_flag)
print('block_%d:' % i, inputs.shape)
# Only apply the BN and ReLU for model that does pre_activation in each
# building/bottleneck block, eg resnet V2.
if self.pre_activation:
if self.batch_norm_flag:
inputs = batch_norm(inputs, training, self.data_format)
inputs = tf.nn.relu(inputs)
# TODO: return at this point if only features are needed
if return_features:
return inputs
if debug:
tf.add_to_collection('metric_ops', tf.reduce_mean(inputs, name='after_blocks'))
# The current top layer has shape
# `batch_size x pool_size x pool_size x final_size`.
# ResNet does an Average Pooling layer over pool_size,
# but that is the same as doing a reduce_mean. We do a reduce_mean
# here because it performs better than AveragePooling2D.
if self.avg_pool:
axes = [2, 3] if self.data_format == 'channels_first' else [1, 2]
inputs = tf.reduce_mean(input_tensor=inputs, axis=axes, keepdims=True)
inputs = tf.identity(inputs, 'final_reduce_mean')
inputs = tf.squeeze(inputs, axes)
elif self.shallow_reduction:
inputs = conv2d_fixed_padding(inputs=inputs, filters=1024, kernel_size=3, strides=2, data_format=self.data_format)
inputs = conv2d_fixed_padding(inputs=inputs, filters=1024, kernel_size=3, strides=2, data_format=self.data_format)
inputs = tf.identity(inputs, 'reduction_conv_1')
print('reduction:', inputs.shape)
inputs = tf.contrib.layers.flatten(inputs)
else:
inputs = tf.contrib.layers.flatten(inputs)
print(inputs)
if additional_features is not None:
inputs = tf.concat([inputs, additional_features], axis=1)
print(inputs)
if self.dropout:
inputs = tf.nn.dropout(inputs, rate=0.1)
inputs = tf.identity(inputs, 'dropout_1')
print('dropout:', inputs.shape)
inputs = tf.compat.v1.layers.dense(inputs=inputs, units=self.num_classes)
inputs = tf.identity(inputs, 'final_dense')
return inputs