-
Notifications
You must be signed in to change notification settings - Fork 5
/
metrics.py
198 lines (170 loc) · 6.38 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import torch
import math
import numpy as np
lg_e_10 = math.log(10)
def log10(x):
"""Convert a new tensor with the base-10 logarithm of the elements of x. """
return torch.log(x) / lg_e_10
def compute_errors(gt, pred):
"""Computation of error metrics between predicted and ground truth depths
"""
valid_mask = gt>0
pred = pred[valid_mask]
gt = gt[valid_mask]
valid_mask = pred>0
pred = pred[valid_mask]
gt = gt[valid_mask]
thresh = torch.max((gt / pred), (pred / gt))
d1 = float((thresh < 1.25).float().mean())
d2 = float((thresh < 1.25 ** 2).float().mean())
d3 = float((thresh < 1.25 ** 3).float().mean())
rmse = (gt - pred) ** 2
rmse = math.sqrt(rmse.mean())
rmse_log = (torch.log(gt) - torch.log(pred)) ** 2
rmse_log = math.sqrt(rmse_log.mean())
abs_rel = ((gt - pred).abs() / gt).mean()
sq_rel = (((gt - pred) ** 2) / gt).mean()
return abs_rel, sq_rel, rmse, rmse_log, d1, d2, d3
class Result(object):
def __init__(self):
self.irmse = 0
self.imae = 0
self.mse = 0
self.rmse = 0
self.mae = 0
self.absrel = 0
self.squared_rel = 0
self.lg10 = 0
self.rmse_log = 0
self.delta1 = 0
self.delta2 = 0
self.delta3 = 0
self.data_time = 0
self.gpu_time = 0
self.silog = 0 # Scale invariant logarithmic error [log(m)*100]
self.photometric = 0
def set_to_worst(self):
self.irmse = np.inf
self.imae = np.inf
self.mse = np.inf
self.rmse = np.inf
self.mae = np.inf
self.absrel = np.inf
self.squared_rel = np.inf
self.lg10 = np.inf
self.rmse_log = np.inf
self.silog = np.inf
self.delta1 = 0
self.delta2 = 0
self.delta3 = 0
self.data_time = 0
self.gpu_time = 0
def update(self, irmse, imae, mse, rmse, mae, absrel, squared_rel, lg10, rmse_log, \
delta1, delta2, delta3, gpu_time, data_time, silog, photometric=0):
self.irmse = irmse
self.imae = imae
self.mse = mse
self.rmse = rmse
self.mae = mae
self.absrel = absrel
self.squared_rel = squared_rel
self.lg10 = lg10
self.rmse_log = rmse_log
self.delta1 = delta1
self.delta2 = delta2
self.delta3 = delta3
self.data_time = data_time
self.gpu_time = gpu_time
self.silog = silog
self.photometric = photometric
def evaluate(self, output, target, photometric=0, cap=None):
if cap != None:
output = torch.clamp(output, max=cap)
target = torch.clamp(target, max=cap)
valid_mask = output>0.1
output = output[valid_mask]
target = target[valid_mask]
valid_mask = target > 0.1
output = output[valid_mask]
target = target[valid_mask]
# convert from meters to mm
# output_mm = 1e3 * output
# target_mm = 1e3 * target
output_mm = output
target_mm = target
abs_diff = (output_mm - target_mm).abs()
self.mse = float((torch.pow(abs_diff, 2)).mean())
self.rmse = math.sqrt(self.mse)
self.mae = float(abs_diff.mean())
self.lg10 = float((log10(output_mm) - log10(target_mm)).abs().mean())
self.absrel = float((abs_diff / target_mm).mean())
self.squared_rel = float(((abs_diff**2 / target_mm)).mean())
maxRatio = torch.max(output_mm / target_mm, target_mm / output_mm)
self.delta1 = float((maxRatio < 1.25).float().mean())
self.delta2 = float((maxRatio < 1.25**2).float().mean())
self.delta3 = float((maxRatio < 1.25**3).float().mean())
self.data_time = 0
self.gpu_time = 0
# silog uses meters
err_log = torch.log(target) - torch.log(output)
self.rmse_log = math.sqrt((err_log**2).mean())
self.silog = math.sqrt((err_log ** 2).mean() - (err_log.mean() ** 2)) * 100
# convert from meters to km
inv_output_km = (1e-3 * output)**(-1)
inv_target_km = (1e-3 * target)**(-1)
abs_inv_diff = (inv_output_km - inv_target_km).abs()
self.irmse = math.sqrt((torch.pow(abs_inv_diff, 2)).mean())
self.imae = float(abs_inv_diff.mean())
self.photometric = float(photometric)
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.count = 0.0
self.sum_irmse = 0
self.sum_imae = 0
self.sum_mse = 0
self.sum_rmse = 0
self.sum_mae = 0
self.sum_absrel = 0
self.sum_squared_rel = 0
self.sum_lg10 = 0
self.sum_rmse_log = 0
self.sum_delta1 = 0
self.sum_delta2 = 0
self.sum_delta3 = 0
self.sum_data_time = 0
self.sum_gpu_time = 0
self.sum_photometric = 0
self.sum_silog = 0
def update(self, result, gpu_time, data_time, n=1):
self.count += n
self.sum_irmse += n * result.irmse
self.sum_imae += n * result.imae
self.sum_mse += n * result.mse
self.sum_rmse += n * result.rmse
self.sum_mae += n * result.mae
self.sum_absrel += n * result.absrel
self.sum_squared_rel += n * result.squared_rel
self.sum_lg10 += n * result.lg10
self.sum_rmse_log += n * result.rmse_log
self.sum_delta1 += n * result.delta1
self.sum_delta2 += n * result.delta2
self.sum_delta3 += n * result.delta3
self.sum_data_time += n * data_time
self.sum_gpu_time += n * gpu_time
self.sum_silog += n * result.silog
self.sum_photometric += n * result.photometric
def average(self):
avg = Result()
if self.count > 0:
avg.update(
self.sum_irmse / self.count, self.sum_imae / self.count,
self.sum_mse / self.count, self.sum_rmse / self.count,
self.sum_mae / self.count, self.sum_absrel / self.count,
self.sum_squared_rel / self.count, self.sum_lg10 / self.count, self.sum_rmse_log / self.count,
self.sum_delta1 / self.count, self.sum_delta2 / self.count, self.sum_delta3 / self.count,
self.sum_gpu_time / self.count,
self.sum_data_time / self.count, self.sum_silog / self.count,
self.sum_photometric / self.count)
return avg