forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k.py
103 lines (95 loc) · 2.79 KB
/
maskfeat_vit-base-p16_8xb256-amp-coslr-300e_in1k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
_base_ = '../_base_/default_runtime.py'
# dataset settings
dataset_type = 'ImageNet'
data_root = 'data/imagenet/'
data_preprocessor = dict(
type='SelfSupDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
scale=224,
crop_ratio_range=(0.5, 1.0),
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(
type='BEiTMaskGenerator',
input_size=14,
num_masking_patches=78,
min_num_patches=15,
),
dict(type='PackInputs')
]
train_dataloader = dict(
batch_size=256,
num_workers=8,
persistent_workers=True,
pin_memory=True,
sampler=dict(type='DefaultSampler', shuffle=True),
collate_fn=dict(type='default_collate'),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='meta/train.txt',
data_prefix=dict(img_path='train/'),
pipeline=train_pipeline))
# model settings
model = dict(
type='MaskFeat',
backbone=dict(type='MaskFeatViT', arch='b', patch_size=16),
neck=dict(
type='LinearNeck',
in_channels=768,
out_channels=108,
norm_cfg=None,
init_cfg=dict(type='TruncNormal', layer='Linear', std=0.02, bias=0)),
head=dict(
type='MIMHead',
loss=dict(type='PixelReconstructionLoss', criterion='L2')),
target_generator=dict(
type='HOGGenerator', nbins=9, pool=8, gaussian_window=16))
# optimizer wrapper
optim_wrapper = dict(
type='AmpOptimWrapper',
loss_scale='dynamic',
optimizer=dict(
type='AdamW', lr=2e-4 * 8, betas=(0.9, 0.999), weight_decay=0.05),
clip_grad=dict(max_norm=0.02),
paramwise_cfg=dict(
bias_decay_mult=0.0,
norm_decay_mult=0.0,
flat_decay_mult=0.0,
custom_keys={
# 'pos_embed': dict(decay_mult=0.),
# 'cls_token': dict(decay_mult=0.),
'mask_token': dict(decay_mult=0.)
}))
# learning rate scheduler
param_scheduler = [
dict(
type='LinearLR',
start_factor=1e-6,
by_epoch=True,
begin=0,
end=30,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=270,
eta_min=1e-6,
by_epoch=True,
begin=30,
end=300,
convert_to_iter_based=True)
]
# runtime settings
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=300)
default_hooks = dict(
# only keeps the latest 3 checkpoints
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3))
# NOTE: `auto_scale_lr` is for automatically scaling LR
# based on the actual training batch size.
auto_scale_lr = dict(base_batch_size=2048)