-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
167 lines (125 loc) · 5.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import random
import torch
import numpy as np
import argparse
import yaml
import torch.utils.data as data
import torch.optim as optim
import torch.optim.lr_scheduler
from torch.autograd import Variable
from termcolor import colored
from segcore.loader import get_loader
from segcore.models import get_model
from segcore.optimizer import get_optimizer
from segcore.loss import get_loss
from segcore.loss.loss import *
from utils import *
def val(cfg=None, model=None):
# Setup Dataloader
data_loader = get_loader(cfg["data"]["dataset"])
v_loader = data_loader(cfg=cfg, training=False)
val_loader = torch.utils.data.DataLoader(v_loader, batch_size=1)
model.eval()
all_preds = []
all_gts = []
for idx, (val_img_, val_label_, eroded_labels_) in enumerate(val_loader):
val_img = np.squeeze(val_img_.numpy(), axis=(0,))
val_label = np.squeeze(val_label_.numpy(), axis=(0,))
eroded_labels = np.squeeze(eroded_labels_.numpy(), axis=(0,))
pred = np.zeros(val_img.shape[:2] + (len(cfg["training"]["labels"]),))
for i, coords in enumerate(grouper(cfg["training"]["batch_size"],
sliding_window(val_img,
step=cfg["training"]["window_size"][0],
window_size=tuple(cfg["training"]["window_size"])))):
# Build the tensor
image_patches = [np.copy(val_img[x:x + w, y:y + h]).transpose((2, 0, 1)) for x, y, w, h in coords]
image_patches = np.asarray(image_patches)
image_patches = Variable(torch.from_numpy(image_patches).cuda(), volatile=True)
# Do the inference
outs = model(image_patches)
outs = outs.data.cpu().numpy()
# Fill in the results array
for out, (x, y, w, h) in zip(outs, coords):
out = out.transpose((1, 2, 0))
pred[x:x + w, y:y + h] += out
del (outs)
pred = np.argmax(pred, axis=-1)
all_preds.append(pred)
all_gts.append(eroded_labels)
# compute some metrics
metrics(pred.ravel(), eroded_labels.ravel(), label_values=cfg["training"]["labels"])
accuracy = metrics(np.concatenate([p.ravel() for p in all_preds]),
np.concatenate([p.ravel() for p in all_gts]).ravel(),
label_values=cfg["training"]["labels"])
return accuracy
def train(cfg=None):
#basic parameters
train_para = cfg["training"]
epochs = train_para["epochs"]
batch_size = train_para["batch_size"]
device_ids = train_para["device_ids"]
labels = train_para["labels"]
n_classes = len(labels)
seeds = train_para["seeds"]
# Setup seeds
torch.manual_seed(seeds)
torch.cuda.manual_seed(seeds)
np.random.seed(seeds)
random.seed(seeds)
# Setup Dataloader
data_loader = get_loader(cfg["data"]["dataset"])
t_loader = data_loader(cfg=cfg)
train_loader = torch.utils.data.DataLoader(t_loader, batch_size=batch_size)
# set the model
model = get_model(cfg["model"]["arch"], n_classes=n_classes)
model = torch.nn.DataParallel(model(), device_ids=device_ids).cuda()
# set the optimizer and scheduler, loss function
optimizer_type = get_optimizer(cfg=cfg)
optimizer_params = {k:v for k, v in cfg['training']['optimizer'].items() if k != 'name'}
optimizer = optimizer_type(model.parameters(), **optimizer_params)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, [25, 35, 45], gamma=0.1)
losser = get_loss(cfg=cfg)
# to iter
losses = np.zeros(1000000)
mean_losses = np.zeros(100000000)
iter_ = 0
for e in range(1, epochs + 1):
if scheduler is not None:
scheduler.step()
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = Variable(data.cuda()), Variable(target.cuda())
optimizer.zero_grad()
output = model(data)
loss = losser(input=output, target=target)
loss.backward()
optimizer.step()
losses[iter_] = loss.data[0]
mean_losses[iter_] = np.mean(losses[max(0, iter_ - 100):iter_])
if iter_ % 100 == 0:
rgb = np.asarray(255 * np.transpose(data.data.cpu().numpy()[0], (1, 2, 0)), dtype='uint8')
pred = np.argmax(output.data.cpu().numpy()[0], axis=0)
gt = target.data.cpu().numpy()[0]
print(colored('Train (epoch {}/{}) [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {}'.format(
e, epochs, batch_idx, len(train_loader),
100. * batch_idx / len(train_loader), loss.data[0], accuracy(pred, gt)), 'red', 'on_yellow'))
iter_ += 1
del (data, target, loss)
if e % 1 == 0:
# We validate with the largest possible stride for faster computing
acc = val(cfg=cfg, model=model)
torch.save(model.state_dict(), './model_paras/segnet256_epoch{}_{}'.format(e, acc))
torch.save(model.state_dict(), './model_paras/segnet_final')
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="config")
parser.add_argument(
"--config",
nargs="?",
type=str,
default="configs/isprs_linknet.yml",
help="Configuration file to use"
)
args = parser.parse_args()
with open(args.config) as fp:
cfg = yaml.load(fp)
train(cfg=cfg)