Skip to content

Commit d1cce83

Browse files
committed
Stateful Model Add
1 parent 16a150e commit d1cce83

File tree

1 file changed

+81
-0
lines changed

1 file changed

+81
-0
lines changed

lstm_regression_stacked_memory.py

Lines changed: 81 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,81 @@
1+
# -*- coding: utf-8 -*-
2+
"""
3+
Created on Thu Aug 1 23:47:37 2019
4+
5+
@author: tanma
6+
"""
7+
8+
import numpy
9+
import matplotlib.pyplot as plt
10+
from pandas import read_csv
11+
import math
12+
from keras.models import Sequential
13+
from keras.layers import Dense
14+
from keras.layers import LSTM
15+
from sklearn.preprocessing import MinMaxScaler
16+
from sklearn.metrics import mean_squared_error
17+
18+
def create_dataset(dataset, look_back=1):
19+
dataX, dataY = [], []
20+
for i in range(len(dataset)-look_back-1):
21+
a = dataset[i:(i+look_back), 0]
22+
dataX.append(a)
23+
dataY.append(dataset[i + look_back, 0])
24+
return numpy.array(dataX), numpy.array(dataY)
25+
26+
numpy.random.seed(7)
27+
28+
dataframe = read_csv('airline_passengers.csv', usecols=[1], engine='python')
29+
dataset = dataframe.values
30+
dataset = dataset.astype('float32')
31+
32+
scaler = MinMaxScaler(feature_range=(0, 1))
33+
dataset = scaler.fit_transform(dataset)
34+
35+
train_size = int(len(dataset) * 0.67)
36+
test_size = len(dataset) - train_size
37+
train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:]
38+
39+
look_back = 3
40+
trainX, trainY = create_dataset(train, look_back)
41+
testX, testY = create_dataset(test, look_back)
42+
43+
trainX = numpy.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1))
44+
testX = numpy.reshape(testX, (testX.shape[0], testX.shape[1], 1))
45+
46+
batch_size = 1
47+
model = Sequential()
48+
model.add(LSTM(4, batch_input_shape=(batch_size, look_back, 1), stateful=True, return_sequences=True))
49+
model.add(LSTM(4, batch_input_shape=(batch_size, look_back, 1), stateful=True))
50+
model.add(Dense(1))
51+
model.compile(loss='mean_squared_error', optimizer='adam')
52+
for i in range(100):
53+
model.fit(trainX, trainY, epochs=1, batch_size=batch_size, verbose=2, shuffle=False)
54+
model.reset_states()
55+
56+
trainPredict = model.predict(trainX, batch_size=batch_size)
57+
model.reset_states()
58+
testPredict = model.predict(testX, batch_size=batch_size)
59+
60+
trainPredict = scaler.inverse_transform(trainPredict)
61+
trainY = scaler.inverse_transform([trainY])
62+
testPredict = scaler.inverse_transform(testPredict)
63+
testY = scaler.inverse_transform([testY])
64+
65+
trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:,0]))
66+
print('Train Score: %.2f RMSE' % (trainScore))
67+
testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:,0]))
68+
print('Test Score: %.2f RMSE' % (testScore))
69+
70+
trainPredictPlot = numpy.empty_like(dataset)
71+
trainPredictPlot[:, :] = numpy.nan
72+
trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict
73+
74+
testPredictPlot = numpy.empty_like(dataset)
75+
testPredictPlot[:, :] = numpy.nan
76+
testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict
77+
78+
plt.plot(scaler.inverse_transform(dataset))
79+
plt.plot(trainPredictPlot)
80+
plt.plot(testPredictPlot)
81+
plt.show()

0 commit comments

Comments
 (0)