-
Notifications
You must be signed in to change notification settings - Fork 19
/
weissman.py
executable file
·172 lines (145 loc) · 5.86 KB
/
weissman.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#!/usr/bin/env python
"""Compute the Weissman Score of a compression algorithm.
The Weissman Score is a fictional performance score for lossless data
compression algorithms devised by Tsachy Weissman and Vinith Misra at
Stanford University and used in the HBO comedy series *Silicon Valley*.
The Weissman score W is computed as:
:math:`W = \alpha \frac{r}{\overline{r}} \frac{log(\overline{T})}{log(T)}`
where :math`r` and :math`T` refer to the compression ratio and time-to-compress
of the target algorithm, :math`r` and :math`T` refer to same quantities for a
standard universal compressor (in this implementation gzip is used) and
:math`\alpha` is a scaling constant.
Further information here:
http://online.wsj.com/news/articles/SB10001424052702303987004579479244213599118
Usage:
python weissman.py -c <command> -i <input> -o <output> -r <repetitions> -a <alpha>
python weissman.py (--help | -h)
python weissman.py (--version | -v)
Options:
-c <command> --command <command> Command to make target algorithm compress <input> file into <output>
-i <input> --input <input> Path of the input (uncompressed) file
-o <output> --output <output> Path to the output (compressed) file generated by <command>
-a <alpha> --alpha <alpha> Scaling parameter of Weissman score
-r <reps> --repetitions <reps> Number of times to repeat the experiment (mean values are used to compute the score)
-h --help Show help
-v --version Show version
"""
from __future__ import division
import argparse
import gzip
import os
import subprocess
import sys
import tempfile
import time
from math import log
__version__ = 0.2
def gzip_compr_test(fname, compresslevel=9):
"""Return compression ratio and time-to-compress using gzip
Parameters
----------
fname : string
The path to the file to compress
compresslevel : int, optional
The compression level used
Returns
-------
r : float
The compression ratio
T : float
The time-to-compress
"""
fname_compr = tempfile.mkstemp(suffix='.gz')[1]
with open(fname, 'rb') as f_in:
with gzip.open(fname_compr, 'wb', compresslevel=compresslevel) as f_out:
t_start = time.time()
f_out.writelines(f_in)
T = time.time() - t_start
r = os.path.getsize(fname)/os.path.getsize(fname_compr)
os.remove(fname_compr)
return r, T
def target_compr_test(command, fname_in, fname_out):
"""Return compression ratio and time-to-compress using a given compression
algorithm
Parameters
----------
command : string
The command for executing the compression algorithm
fname_in : string
The path to the uncompressed file which will be compressed by the command
fname_out : string
The path to the compressed file generated by the command
Returns
-------
r : float
The compression ratio
T : float
The time-to-compress
"""
t_start = time.time()
retcode = subprocess.call(command.split(" "))
if retcode != 0:
raise ValueError("The target algorithm returned with code %d, something went wrong"
% retcode)
T = time.time() - t_start
r = os.path.getsize(fname_in)/os.path.getsize(fname_out)
os.remove(fname_out)
return r, T
def weissman(command, fname_in, fname_out, alpha, reps):
"""Compute the Weissman score of a compression algorithm using Gzip as
baseline.
Parameters
----------
command : string
The command for executing the compression algorithm
fname_in : string
The path to the uncompressed file which will be compressed by the command
fname_out : string
The path to the compressed file generated by the command
alpha : float
The scaling factor
reps : int
The number of times compression test is repeated
Returns
-------
w : float
The Weissman score
"""
def mean(x):
return sum(x)/len(x)
r, T = [mean(x)
for x in zip(*[target_compr_test(command, fname_in, fname_out)
for _ in range(reps)])]
r_b, T_b = [mean(x)
for x in zip(*[gzip_compr_test(fname_in)
for _ in range(reps)])]
return alpha * (r/r_b) * (log(T_b)/log(T))
def main():
parser = argparse.ArgumentParser(description="Compute Weissman Score of a "
"lossless compression algorithm")
parser.add_argument("-v", "--version", action="version",
version="%s" % __version__)
parser.add_argument("-c", "--command", dest="command",
help="Command to make test algorithm compress INPUT file into OUTPUT",
required=True)
parser.add_argument("-i", "--input", dest="input",
help="the input (uncompressed) file",
required=True)
parser.add_argument("-o", "--output", dest="output",
help="the output (compressed) file generated by COMMAND",
required=True)
parser.add_argument("-a", "--alpha", dest="alpha", type=float,
help="the alpha coefficient of the Weissman score",
required=True)
parser.add_argument("-r", "--repetitions", dest="reps", type=int,
help="the number of times to repeat the compression test",
required=True)
args = parser.parse_args()
if args.alpha <= 0:
sys.exit("The ALPHA argument must be positive")
if args.reps <= 0:
sys.exit("The REPETITIONS argument must be positive")
w = weissman(args.command, args.input, args.output, args.alpha, args.reps)
print('Weissman score: {}'.format(w))
if __name__ == '__main__':
sys.exit(main())