forked from xgastaldi/shake-shake
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.lua
100 lines (83 loc) · 3.02 KB
/
main.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
--
-- Copyright (c) 2016, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found here
-- https://github.com/facebook/fb.resnet.torch/blob/master/LICENSE. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
--
-- Code modified for Shake-Shake by Xavier Gastaldi
--
require 'torch'
require 'paths'
require 'optim'
require 'nn'
------Shake-Shake------
local json = require 'cjson'
------Shake-Shake------
local DataLoader = require 'dataloader'
local models = require 'models/init'
local Trainer = require 'train'
local opts = require 'opts'
local checkpoints = require 'checkpoints'
-- we don't change this to the 'correct' type (e.g. HalfTensor), because math
-- isn't supported on that type. Type conversion later will handle having
-- the correct type.
torch.setdefaulttensortype('torch.FloatTensor')
torch.setnumthreads(1)
local opt = opts.parse(arg)
torch.manualSeed(opt.manualSeed)
cutorch.manualSeedAll(opt.manualSeed)
-- Load previous checkpoint, if it exists
local checkpoint, optimState = checkpoints.latest(opt)
-- Create model
local model, criterion = models.setup(opt, checkpoint)
-- Data loading
local trainLoader, valLoader = DataLoader.create(opt)
-- The trainer handles the training loop and evaluation on validation set
local trainer = Trainer(model, criterion, opt, optimState)
if opt.testOnly then
local top1Err, top5Err = trainer:test(0, valLoader)
print(string.format(' * Results top1: %6.3f top5: %6.3f', top1Err, top5Err))
return
end
------Shake-Shake------
local logfile = io.open(paths.concat(opt.save, 'log.txt'), 'w')
local function log(t)
logfile:write('json_stats: '..json.encode(tablex.merge(t,opt,true))..'\n')
logfile:flush()
end
------Shake-Shake------
local startEpoch = checkpoint and checkpoint.epoch + 1 or opt.epochNumber
local bestTop1 = math.huge
local bestTop5 = math.huge
for epoch = startEpoch, opt.nEpochs do
-- Train for a single epoch
local trainTop1, trainTop5, trainLoss = trainer:train(epoch, trainLoader)
-- Run model on validation set
local testTop1, testTop5 = trainer:test(epoch, valLoader)
--local bestModel = false
--if testTop1 < bestTop1 then
-- bestModel = true
-- bestTop1 = testTop1
-- bestTop5 = testTop5
-- print(' * Best model ', testTop1, testTop5)
--end
------Shake-Shake------
log{
epoch = epoch,
trainTop1 = trainTop1,
trainTop5 = trainTop5,
testTop1 = testTop1,
testTop5 = testTop5,
trainLoss = trainLoss,
}
------Shake-Shake------
--checkpoints.save(epoch, model, trainer.optimState, bestModel, opt)
end
checkpoints.save(opt.nEpochs, model, trainer.optimState, true, opt)
------Shake-Shake------
-- The error rate for CIFAR-10 should be the error rate obtained at the end of the last epoch, not the best error rate
-- The fb.resnet line below is only valid for Imagenet experiments
-- print(string.format(' * Finished top1: %6.3f top5: %6.3f', bestTop1, bestTop5))
------Shake-Shake------