-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcube.py
193 lines (153 loc) · 5.43 KB
/
cube.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
"""Helper functions for the unit hypercube [0, 1]^D"""
import torch
from math import pi
def unsqueeze_as(x, y, back=True):
"""
Unsqueeze x to have as many dimensions as y. For example, tensor shapes:
x: (a, b, c), y: (a, b, c, d, e) -> output: (a, b, c, 1, 1)
"""
if back:
return x.view(*x.shape, *((1,) * (len(y.shape) - len(x.shape))))
else:
return x.view(*((1,) * (len(y.shape) - len(x.shape))), *x.shape)
def inside(x):
"""
Checks if x is inside the unit hypercube, batchwise
Args
----
x (Tensor):
input of shape [B, ...]
Returns
-------
an output Tensor of shape [B] correpsonding to if each x[i] is in the cube
"""
x = x.flatten(1)
return torch.logical_and(x >= 0, x <= 1).all(dim=-1)
def reflect(x):
"""
Performs reflections until x is inside the domain.
Args
----
x (Tensor):
input of shape [B, ...]
Returns
-------
an output Tensor with the same shape as x which is the "reflected"-inside version.
"""
xm2 = x % 2
xm2[xm2 > 1] = 2 - xm2[xm2 > 1]
return xm2
def sample_hk(x, sigma):
"""
Sample from heat kernel starting at point x with coefficient sigma.
Args
----
x (Tensor):
input of shape [B, ...]. Corresponds to the pseudo-"mean" or "starting point".
sigma (Tensor):
input of shape [B]. Corresponds to the std dev of the underlying Gaussian
or t^2/2 where t is the time of the heat equation PDE.
Returns
-------
an output Tensor with the same shape as x corresponding to a random sample.
"""
if not torch.is_tensor(sigma):
sigma = sigma * torch.ones(x.shape[0]).to(x)
samples_gauss = torch.randn_like(x) * unsqueeze_as(sigma, x) + x
return reflect(samples_gauss)
def _score_hk_ef(x, x_orig, t, efs=20):
"""
Computes the score of the heat kernel using eigenfunctions.
Args
----
x (Tensor):
shape [B, ...]. Corresponds to the sampled point.
x_orig (Tensor):
shape [B, ...] same as x. Corresponds to the origin/pseudo-mean.
t (Tensor):
shape [B]. Time of the heat equation PDE.
efs (int):
number of eigenfunctions to compute with
Returns
-------
an output tensor of the same shape as x corresponding to the score of the heat kernel.
"""
eval_range = torch.arange(1, efs + 1).to(x)
x_rescaled = pi * x.unsqueeze(0) * unsqueeze_as(eval_range, x.unsqueeze(0))
x_orig_rescaled = pi * x_orig.unsqueeze(0) * unsqueeze_as(eval_range, x_orig.unsqueeze(0))
x_sin = x_rescaled.sin()
x_cos = x_rescaled.cos()
x_orig_cos = x_orig_rescaled.cos()
e_powers_denom = (-t.unsqueeze(0) * eval_range.unsqueeze(-1).pow(2) * (pi ** 2)).exp()
e_powers_num = e_powers_denom * eval_range.unsqueeze(-1)
num = - 2 * pi * (unsqueeze_as(e_powers_num, x_sin) * (x_sin * x_orig_cos)).sum(0)
denom = 1 + 2 * (unsqueeze_as(e_powers_denom, x_sin) * (x_cos * x_orig_cos)).sum(0)
return (num / (denom + 1e-12))
def _score_hk_refl(x, x_orig, t, refls=2):
"""
Computes the score of the heat kernel using reflection.
Args
----
x (Tensor):
shape [B, ...]. Corresponds to the sampled point.
x_orig (Tensor):
shape [B, ...] same as x. Corresponds to the origin/pseudo-mean.
t (Tensor):
shape [B]. Time of the heat flow PDE.
refls (int):
number of reflections to sum up.
Returns
-------
an output tensor of the same shape as x corresponding to the score of the heat kernel.
"""
refls = torch.arange(-2 * refls, 2 * refls + 1, 2).to(x)
x_refl = torch.cat((
unsqueeze_as(refls, x.unsqueeze(0)) + x.unsqueeze(0),
unsqueeze_as(refls, x.unsqueeze(0)) - x.unsqueeze(0)
), dim=0)
refl_sign = torch.cat((torch.ones_like(refls), -torch.ones_like(refls)), dim=0)
x_minus = x_refl - x_orig.unsqueeze(0)
fourt = (4 * unsqueeze_as(t.unsqueeze(0), x_minus))
denom_coeff = - 2 * x_minus / fourt
e_powers = (- x_minus.pow(2) / fourt).exp()
num = (denom_coeff * e_powers * unsqueeze_as(refl_sign, e_powers)).sum(0)
denom = e_powers.sum(0)
return (num/ (denom + 1e-12))
def score_hk(x, x_orig, sigma, efs=20, refls=10, min_cutoff=1e-2):
"""
Computes the score of the heat kernel using eigenfunctions.
Args
----
x (Tensor):
shape [B, ...]. Corresponds to the sampled point.
x_orig (Tensor):
shape [B, ...] same as x. Corresponds to the origin/pseudo-mean.
sigma (Tensor):
shape [B]. Std dev of the underlying Guassian
efs (int):
see _score_hk_ef
refls (int):
see _score_hk_refl
min_cutoff (float):
value such that below computes with refls and above with efs
Returns
-------
an output tensor of the same shape as x corresponding to the score of the heat kernel.
"""
t = sigma ** 2 / 2
if not torch.is_tensor(t):
t = t * torch.ones(x.shape[0]).to(x)
ef_cond = t > min_cutoff
x_ef = x[ef_cond]
x_orig_ef = x_orig[ef_cond]
t_ef = t[ef_cond]
refl_cond = torch.logical_not(ef_cond)
x_refl = x[refl_cond]
x_orig_refl = x_orig[refl_cond]
t_refl = t[refl_cond]
scores_ef = _score_hk_ef(x_ef, x_orig_ef, t_ef, efs=efs)
scores_refl = _score_hk_refl(x_refl, x_orig_refl, t_refl, refls=refls)
scores = torch.zeros_like(x)
scores[ef_cond] = scores_ef
scores[refl_cond] = scores_refl
return scores