forked from streamlit/example-app-time-series-annotation
-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathstreamlit_app.py
160 lines (121 loc) · 3.84 KB
/
streamlit_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import altair as alt
import pandas as pd
import streamlit as st
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import wget
import sklearn
import joblib
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
# Configuration Page
st.set_page_config(
page_title="Classification titanic", page_icon="🤖", layout="centered"
)
# Titre de l'app
st.title("Classification binaire du titanic - 2023")
# st.markdown(
# "[](http://google.com.au/)"
# )
st.markdown(
'<div style="text-align: center;"><img src="https://upload.wikimedia.org/wikipedia/en/1/18/Titanic_%281997_film%29_poster.png" alt="Italian Trulli"></div>',
unsafe_allow_html=True,
)
st.markdown("")
st.markdown("")
#### IMPORTATION DES DONNÉES #####
# wget.download(
# "https://raw.githubusercontent.com/iid-ulaval/EEAA-datasets/master/titanic_train.csv",
# "./titanic_train.csv",
# )
# wget.download(
# "https://raw.githubusercontent.com/iid-ulaval/EEAA-datasets/master/titanic_test.csv",
# "./titanic_test.csv",
# )
# train_data = pd.read_csv("titanic_train.csv")
# test_data = pd.read_csv("titanic_test.csv")
#### TEST VIZ ######
# st.dataframe(train_data.head(20))
# fig = plt.figure(figsize=(10, 4))
# sns.barplot(x="Pclass", y="Survived", data=train_data)
# st.pyplot(fig)
#### TEST VIZ ######
# # Traitement valeur manquantes
# train_data = train_data.dropna()
# # Traitement de la variable Sexe
# train_data["Sex"] = train_data["Sex"].replace("male", 1)
# train_data["Sex"] = train_data["Sex"].replace("female", 0)
# # EMBARKED
# train_data["Embarked"] = train_data["Embarked"].replace("C", 0)
# train_data["Embarked"] = train_data["Embarked"].replace("S", 1)
# train_data["Embarked"] = train_data["Embarked"].replace("Q", 2)
# # Ici on sépare nos données X (variables prédictives) et y (variables à prédire)
# X = train_data[
# ["Sex", "Age", "Pclass", "Embarked"]
# ] # variables prédictives (indépendantes)
# y = train_data["Survived"] # Variable à prédire (dépendantes)
# model = LogisticRegression() # Importe l'algorithme
# model.fit(X, y)
# load the saved model
model = joblib.load('model_titanic.joblib')
with st.form("my_form"):
AGE = st.slider("Age de la personne?", 0, 2, 95)
st.markdown("")
st.markdown("")
SEX = st.radio("Sexe de la personne", ("Homme", "Femme"))
st.markdown("")
st.markdown("")
PCLASS = st.selectbox(
"Séletionez la classe de la personne", ("Première", "Deuxième", "Troisème")
)
# EMBARKED
# EMBARKED = st.selectbox("Séletionez l'embarcation", ("C", "S", "Q"))
st.markdown("")
st.markdown("")
st.markdown("")
st.markdown("")
st.markdown("")
st.markdown("")
st.write(
"Cette personne avait ",
AGE,
"ans,",
" était un/une",
SEX,
"et était dans la",
PCLASS,
"classe",
)
if SEX == "Homme":
SEX = 1
else:
SEX = 0
if PCLASS == "Première":
PCLASS = 1
elif PCLASS == "Deuxième":
PCLASS = 2
else:
PCLASS = 3
# if EMBARKED == "C":
# EMBARKED = 1
# elif EMBARKED == "S":
# EMBARKED = 2
# else:
# EMBARKED = 3
# PREDICTIONS 0 ou 1
pred = model.predict(
[[PCLASS, SEX, AGE]]
)
if pred == 0:
pred = "mort"
else:
pred = "survie"
st.metric(" ", pred)
proba = model.predict_proba([[PCLASS, SEX, AGE]])
st.write(f"Probabilité de survie : {proba[0][1]*100:.2f}%")
st.write(f"Probabilité de décès : {proba[0][0]*100:.2f}%")
submitted = st.form_submit_button("Prédire")