forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
BucketizationUtils.h
91 lines (76 loc) · 4.15 KB
/
BucketizationUtils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#pragma once
#include <ATen/ATen.h>
#include <ATen/native/TypeProperties.h>
namespace at {
namespace native {
inline void searchsorted_maybe_trim_input_tensors(
Tensor& trimmed_input,
Tensor& trimmed_boundaries,
const Tensor& raw_input,
const Tensor& raw_boundaries) {
bool in_is_contiguous = raw_input.is_contiguous();
bool bd_is_contiguous = raw_boundaries.is_contiguous();
if (!in_is_contiguous) {
TORCH_WARN_ONCE("input value tensor is non-contiguous, this will lower the performance due to extra data copy "
"when converting non-contiguous tensor to contiguous, please use contiguous input value tensor if possible");
trimmed_input = raw_input.contiguous();
}
if (!bd_is_contiguous) {
TORCH_WARN_ONCE("input value tensor is non-contiguous, this will lower the performance due to extra data copy "
"when converting non-contiguous tensor to contiguous, please use contiguous input value tensor if possible");
trimmed_boundaries = raw_boundaries.contiguous();
}
if (raw_input.dtype() != raw_boundaries.dtype()) {
at::native::ResultTypeState state = {};
state = at::native::update_result_type_state(raw_boundaries, state);
state = at::native::update_result_type_state(raw_input, state);
ScalarType common_stype = at::native::result_type(state);
TORCH_INTERNAL_ASSERT(common_stype != ScalarType::Undefined);
if (common_stype != raw_input.scalar_type()) {
trimmed_input = in_is_contiguous ? raw_input.to(common_stype) : trimmed_input.to(common_stype);
}
if (common_stype != raw_boundaries.scalar_type()) {
trimmed_boundaries = bd_is_contiguous ? raw_boundaries.to(common_stype) : trimmed_boundaries.to(common_stype);
}
}
}
inline bool searchsorted_dims_matched_before_last_dim(const Tensor& boundaries, const Tensor& input) {
if (boundaries.dim() != input.dim()) {
return false;
}
const auto& dims_bd = boundaries.sizes();
const auto& dims_in = input.sizes();
for (int64_t dim = 0; dim + 1 < boundaries.dim(); ++dim) {
if (dims_bd[dim] != dims_in[dim]) {
return false;
}
}
return true;
}
inline Tensor searchsorted_scalar_tensor(const Scalar& scalar, const c10::Device& device) {
auto tensor = c10::scalar_to_tensor(scalar, device);
// This is to adopt the scalar promotion rules defined in native/TypeProperties.h
// So we have the same type promotion rules as binary operations.
tensor.unsafeGetTensorImpl()->set_wrapped_number(true);
return tensor;
}
inline void searchsorted_pre_check(const Tensor& boundaries, const Tensor& input, const Tensor& output, bool out_int32) {
TORCH_CHECK(boundaries.device() == input.device(), "boundaries and input value tensors should have same device type, ",
"but we got boundaries tensor device type ", boundaries.device(), " and input value tensor device type ", input.device());
TORCH_CHECK(input.dim() > 0 || (input.dim() == 0 && input.numel() == 1 && boundaries.dim() == 1),
"input value can be a scalar only when boundaries tensor dimension is 1, but we got boundaries tensor ",
"dim(", boundaries.dim(), ") and input value's dim(", input.dim(), ") numel(", input.numel(), ")");
TORCH_CHECK(boundaries.dim() != 0, "boundaries tensor should have positive dimension, but got 0 dimension");
TORCH_CHECK(boundaries.dim() == 1 || searchsorted_dims_matched_before_last_dim(boundaries, input),
"boundaries tensor should be 1 dimension or the first N-1 dimensions of boundaries tensor and input value tensor ",
"must match, but we got boundaries tensor ", boundaries.sizes(), " and input value tensor ", input.sizes());
ScalarType output_dtype = output.scalar_type();
TORCH_CHECK((output_dtype == ScalarType::Long && !out_int32) || (output_dtype == ScalarType::Int && out_int32),
"output tensor's dtype is wrong, it can only be Int(int32) or Long(int64) depending on whether out_int32 flag is True, ",
"but we got output tensor's dtype ", output_dtype, " and out_int32 flag is ", (out_int32 ? "True" : "False"));
if (out_int32) {
TORCH_CHECK(boundaries.sizes().back() < INT_MAX,
"the size of boundaries' last dimension should be less than ", INT_MAX, ", but we got ", boundaries.sizes().back());
}
}
}}