forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
_vmap_internals.py
268 lines (238 loc) · 12.9 KB
/
_vmap_internals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import torch
import functools
from torch import Tensor
from typing import Any, Callable, Optional, Tuple, Union, List
from torch.utils._pytree import tree_flatten, tree_unflatten, _broadcast_to_and_flatten
import warnings
in_dims_t = Union[int, Tuple]
out_dims_t = Union[int, Tuple[int, ...]]
# Checks that all args-to-be-batched have the same batch dim size
def _validate_and_get_batch_size(
flat_in_dims: List[Optional[int]],
flat_args: List) -> int:
batch_sizes = [arg.size(in_dim) for in_dim, arg in zip(flat_in_dims, flat_args)
if in_dim is not None]
if batch_sizes and any([size != batch_sizes[0] for size in batch_sizes]):
raise ValueError(
f'vmap: Expected all tensors to have the same size in the mapped '
f'dimension, got sizes {batch_sizes} for the mapped dimension')
return batch_sizes[0]
def _num_outputs(batched_outputs: Union[Tensor, Tuple[Tensor, ...]]) -> int:
if isinstance(batched_outputs, tuple):
return len(batched_outputs)
return 1
# If value is a tuple, check it has length `num_elements`.
# If value is not a tuple, make a tuple with `value` repeated `num_elements` times
def _as_tuple(value: Any, num_elements: int, error_message_lambda: Callable[[], str]) -> Tuple:
if not isinstance(value, tuple):
return (value,) * num_elements
if len(value) != num_elements:
raise ValueError(error_message_lambda())
return value
# Creates BatchedTensors for every Tensor in arg that should be batched.
# Returns the (potentially) batched arguments and the batch_size.
def _create_batched_inputs(
in_dims: in_dims_t, args: Tuple, vmap_level: int, func: Callable) -> Tuple[Tuple, int]:
if not isinstance(in_dims, int) and not isinstance(in_dims, tuple):
raise ValueError(
f'vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): '
f'expected `in_dims` to be int or a (potentially nested) tuple '
f'matching the structure of inputs, got: {type(in_dims)}.')
if len(args) == 0:
raise ValueError(
f'vmap({_get_name(func)})(<inputs>): got no inputs. Maybe you forgot to add '
f'inputs, or you are trying to vmap over a function with no inputs. '
f'The latter is unsupported.')
flat_args, args_spec = tree_flatten(args)
flat_in_dims = _broadcast_to_and_flatten(in_dims, args_spec)
if flat_in_dims is None:
raise ValueError(
f'vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): '
f'in_dims is not compatible with the structure of `inputs`. '
f'in_dims has structure {tree_flatten(in_dims)[1]} but inputs '
f'has structure {args_spec}.')
for arg, in_dim in zip(flat_args, flat_in_dims):
if not isinstance(in_dim, int) and in_dim is not None:
raise ValueError(
f'vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): '
f'Got in_dim={in_dim} for an input but in_dim must be either '
f'an integer dimension or None.')
if isinstance(in_dim, int) and not isinstance(arg, Tensor):
raise ValueError(
f'vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): '
f'Got in_dim={in_dim} for an input but the input is of type '
f'{type(arg)}. We cannot vmap over non-Tensor arguments, '
f'please use None as the respective in_dim')
if in_dim is not None and (in_dim < 0 or in_dim >= arg.dim()):
raise ValueError(
f'vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): '
f'Got in_dim={in_dim} for some input, but that input is a Tensor '
f'of dimensionality {arg.dim()} so expected in_dim to satisfy '
f'0 <= in_dim < {arg.dim()}.')
batch_size = _validate_and_get_batch_size(flat_in_dims, flat_args)
# See NOTE [Ignored _remove_batch_dim, _add_batch_dim]
batched_inputs = [arg if in_dim is None else
torch._add_batch_dim(arg, in_dim, vmap_level)
for in_dim, arg in zip(flat_in_dims, flat_args)]
return tree_unflatten(batched_inputs, args_spec), batch_size
# Undos the batching (and any batch dimensions) associated with the `vmap_level`.
def _unwrap_batched(
batched_outputs: Union[Tensor, Tuple[Tensor, ...]],
out_dims: out_dims_t,
vmap_level: int, batch_size: int, func: Callable) -> Tuple:
num_outputs = _num_outputs(batched_outputs)
out_dims_as_tuple = _as_tuple(
out_dims, num_outputs,
lambda: f'vmap({_get_name(func)}, ..., out_dims={out_dims}): `out_dims` must '
f'have one dim per output (got {num_outputs} outputs) of {_get_name(func)}.')
# NOTE [Ignored _remove_batch_dim, _add_batch_dim]
# There is something wrong with our type bindings for functions that begin
# with '_', see #40397.
if isinstance(batched_outputs, Tensor):
out_dim = out_dims_as_tuple[0]
return torch._remove_batch_dim(batched_outputs, vmap_level, batch_size, out_dim) # type: ignore[return-value]
return tuple(torch._remove_batch_dim(out, vmap_level, batch_size, out_dim)
for out, out_dim in zip(batched_outputs, out_dims_as_tuple))
# Checks that `fn` returned one or more Tensors and nothing else.
# NB: A python function that return multiple arguments returns a single tuple,
# so we are effectively checking that `outputs` is a single Tensor or a tuple of
# Tensors.
def _validate_outputs(outputs: Any, func: Callable) -> None:
if isinstance(outputs, Tensor):
return
if not isinstance(outputs, tuple):
raise ValueError(f'vmap({_get_name(func)}, ...): `{_get_name(func)}` must only return '
f'Tensors, got type {type(outputs)} as the return.')
for idx, output in enumerate(outputs):
if isinstance(output, Tensor):
continue
raise ValueError(f'vmap({_get_name(func)}, ...): `{_get_name(func)}` must only return '
f'Tensors, got type {type(output)} for return {idx}.')
def _check_out_dims_is_int_or_int_tuple(out_dims: out_dims_t, func: Callable) -> None:
if isinstance(out_dims, int):
return
if not isinstance(out_dims, tuple) or \
not all([isinstance(out_dim, int) for out_dim in out_dims]):
raise ValueError(
f'vmap({_get_name(func)}, ..., out_dims={out_dims}): `out_dims` must be '
f'an int or a tuple of int representing where in the outputs the '
f'vmapped dimension should appear.')
def _get_name(func: Callable):
if hasattr(func, '__name__'):
return func.__name__
# Not all callables have __name__, in fact, only static functions/methods do.
# A callable created via functools.partial or an nn.Module, to name some
# examples, don't have a __name__.
return repr(func)
# vmap(func)(inputs) wraps all Tensor inputs to be batched in BatchedTensors,
# sends those into func, and then unwraps the output BatchedTensors. Operations
# on BatchedTensors perform the batched operations that the user is asking for.
def vmap(func: Callable, in_dims: in_dims_t = 0, out_dims: out_dims_t = 0) -> Callable:
"""
vmap is the vectorizing map. Returns a new function that maps `func` over some
dimension of the inputs. Semantically, vmap pushes the map into PyTorch
operations called by `func`, effectively vectorizing those operations.
vmap is useful for handling batch dimensions: one can write a function `func`
that runs on examples and then lift it to a function that can take batches of
examples with `vmap(func)`. vmap can also be used to compute batched
gradients when composed with autograd.
.. note::
We are actively developing a different and improved vmap prototype
`here. <https://github.com/zou3519/functorch>`_ The improved
prototype is able to arbitrarily compose with gradient computation.
Please give that a try if that is what you're looking for.
Furthermore, if you're interested in using vmap for your use case,
please `contact us! <https://github.com/pytorch/pytorch/issues/42368>`_
We're interested in gathering feedback from early adopters to inform
the design.
.. warning::
torch.vmap is an experimental prototype that is subject to
change and/or deletion. Please use at your own risk.
Args:
func (function): A Python function that takes one or more arguments.
Must return one or more Tensors.
in_dims (int or nested structure): Specifies which dimension of the
inputs should be mapped over. `in_dims` should have a structure
like the inputs. If the `in_dim` for a particular input is None,
then that indicates there is no map dimension. Default: 0.
out_dims (int or Tuple[int]): Specifies where the mapped dimension
should appear in the outputs. If `out_dims` is a Tuple, then it should
have one element per output. Default: 0.
Returns:
Returns a new "batched" function. It takes the same inputs as `func`,
except each input has an extra dimension at the index specified by `in_dims`.
It takes returns the same outputs as `func`, except each output has
an extra dimension at the index specified by `out_dims`.
.. warning:
vmap works best with functional-style code. Please do not perform any
side-effects in `func`, with the exception of in-place PyTorch operations.
Examples of side-effects include mutating Python data structures and
assigning values to variables not captured in `func`.
One example of using `vmap` is to compute batched dot products. PyTorch
doesn't provide a batched `torch.dot` API; instead of unsuccessfully
rummaging through docs, use `vmap` to construct a new function.
>>> torch.dot # [D], [D] -> []
>>> batched_dot = torch.vmap(torch.dot) # [N, D], [N, D] -> [N]
>>> x, y = torch.randn(2, 5), torch.randn(2, 5)
>>> batched_dot(x, y)
`vmap` can be helpful in hiding batch dimensions, leading to a simpler
model authoring experience.
>>> batch_size, feature_size = 3, 5
>>> weights = torch.randn(feature_size, requires_grad=True)
>>>
>>> def model(feature_vec):
>>> # Very simple linear model with activation
>>> return feature_vec.dot(weights).relu()
>>>
>>> examples = torch.randn(batch_size, feature_size)
>>> result = torch.vmap(model)(examples)
`vmap` can also help vectorize computations that were previously difficult
or impossible to batch. One example is higher-order gradient computation.
The PyTorch autograd engine computes vjps (vector-Jacobian products).
Computing a full Jacobian matrix for some function f: R^N -> R^N usually
requires N calls to `autograd.grad`, one per Jacobian row. Using `vmap`,
we can vectorize the whole computation, computing the Jacobian in a single
call to `autograd.grad`.
>>> # Setup
>>> N = 5
>>> f = lambda x: x ** 2
>>> x = torch.randn(N, requires_grad=True)
>>> y = f(x)
>>> I_N = torch.eye(N)
>>>
>>> # Sequential approach
>>> jacobian_rows = [torch.autograd.grad(y, x, v, retain_graph=True)[0]
>>> for v in I_N.unbind()]
>>> jacobian = torch.stack(jacobian_rows)
>>>
>>> # vectorized gradient computation
>>> def get_vjp(v):
>>> return torch.autograd.grad(y, x, v)
>>> jacobian = torch.vmap(get_vjp)(I_N)
.. note::
vmap does not provide general autobatching or handle variable-length
sequences out of the box.
"""
warnings.warn(
'torch.vmap is an experimental prototype that is subject to '
'change and/or deletion. Please use at your own risk. There may be '
'unexpected performance cliffs due to certain operators not being '
'implemented. To see detailed performance warnings please use '
'`torch._C._debug_only_display_vmap_fallback_warnings(True) '
'before the call to `vmap`.',
stacklevel=2)
return _vmap(func, in_dims, out_dims)
# A version of vmap but without the initial "experimental prototype" warning
def _vmap(func: Callable, in_dims: in_dims_t = 0, out_dims: out_dims_t = 0) -> Callable:
@functools.wraps(func)
def wrapped(*args):
_check_out_dims_is_int_or_int_tuple(out_dims, func)
vmap_level = torch._C._vmapmode_increment_nesting()
try:
batched_inputs, batch_size = _create_batched_inputs(in_dims, args, vmap_level, func)
batched_outputs = func(*batched_inputs)
_validate_outputs(batched_outputs, func)
return _unwrap_batched(batched_outputs, out_dims, vmap_level, batch_size, func)
finally:
torch._C._vmapmode_decrement_nesting()
return wrapped