-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextrap.pro
151 lines (128 loc) · 4.79 KB
/
extrap.pro
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
function extrap, xin, yin, targett = targett, fast = fast, $
square = square, scatter = scatter, weight = weight, $
coeffs = coeffs
;+
; NAME:
; EXTRAP
; PURPOSE:
; To extrapolate a function T, Y(T) to a set value of T
;
; CALLING SEQUENCE:
; value = EXTRAP(t, y, [targett = targett, /fast, /square, scatter =
; scatter, /weight])
;
; INPUTS:
; T, Y -- The indpendent and dependent variables for extrapolation.
; TARGETT -- The target T value for extrapolation
;
; KEYWORD PARAMETERS:
; /FAST -- Subsample the data to speed up performance
; /SQUARE -- Do a quadratic extrapolation
; SCATTER -- The M.A.D. of the extrapolated moment values.
; /WEIGHT -- Weight the data according to contour level.
; COEFFS -- Set to a named variable to received the coefficients of
; the fit.
;
; OUTPUTS:
; VALUE -- The extrapolated value.
;
; MODIFICATION HISTORY:
;
; Documented -- Fri Sep 2 16:47:24 2005, Erik Rosolowsky
; <erosolow@asgard.cfa.harvard.edu>
;
;-
scatter = !values.f_nan
; THE TARGET FOR THE EXTRAPOLATION
if (n_elements(targett) gt 0) then begin
if ((targett gt min(xin)) AND (targett lt max(xin))) then begin
dummy = min(abs(xin - targett), mind)
return, yin[mind]
endif
endif
; CAN'T EXTRAPOLATE WITH LESS THAN 5 DATA POINTS
if (n_elements(xin) lt 5) then begin
return, !values.f_nan
endif
; REVERSE THE (SORTED) ARRAYS BEFORE EXTRAPOLATING
xuse = reverse(xin)
yuse = reverse(yin)
; CULL OUT BAD VALUES
goodind = where(finite(yuse), ct)
if ct gt 0 then begin
yuse = yuse[goodind]
xuse = xuse[goodind]
endif
; TO DO THINGS FAST, WE DECIMATE THE ARRAY DOWN TO 250 ELEMENTS
if (keyword_set(fast)) and (n_elements(xuse) gt 250) then begin
useindex = findgen(250)*n_elements(xuse)/250.
xuse = xuse[useindex]
yuse = yuse[useindex]
endif
; KEEP FITTING, INCLUDING PROGRESSIVELY MORE AND MORE OF THE CLOUD FOR
; THE FIT.
if (NOT keyword_set(weight)) then begin
coeffs = dblarr(2, n_elements(xuse))*!values.f_nan
if (keyword_set(square)) then $
coeffs = dblarr(3, n_elements(xuse))*!values.f_nan
for i = long(3), n_elements(xuse)-1 do begin
xfit = xuse[0:i]
yfit = yuse[0:i]
n = n_elements(xfit)
if (NOT keyword_set(square)) then begin
M = [[n, total(xfit)], $
[total(xfit), total(xfit^2)]]
covar = invert(M)
coeffs[*, i] = reform(covar##transpose([total(yfit), total(xfit*yfit)]))
endif else begin
M = [[n, total(xfit), total(xfit^2)], $
[total(xfit), total(xfit^2), total(xfit^3)], $
[total(xfit^2), total(xfit^3), total(xfit^4)]]
covar = invert(M)
coeffs[*, i] = reform(covar##transpose([total(yfit), total(xfit*yfit), total(xfit^2*yfit)]))
endelse
endfor
; DO THE EXTRAPOLATION
extrap_value = median(coeffs[0, *] + coeffs[1, *]*targett)
scatter = mad(coeffs[0, *] + coeffs[1, *]*targett)
if (keyword_set(square)) then begin
extrap_value = median(coeffs[0, *] + coeffs[1, *]*targett + $
coeffs[2, *]*targett^2)
scatter = mad(coeffs[0, *] + coeffs[1, *]*targett + $
coeffs[2, *]*targett^2)
endif
endif else begin
coeffs = dblarr(2)*!values.f_nan
if (keyword_set(square)) then $
coeffs = dblarr(3)*!values.f_nan
xfit = xuse
yfit = yuse
wfit = (reverse(findgen(n_elements(yfit))+1.0)); WEIGHT BY CONTOUR NUMBER (BIG = MORE WEIGHT)
if (NOT keyword_set(square)) then begin
M = [[total(wfit), total(xfit*wfit)], $
[total(xfit*wfit), total(xfit^2*wfit)]]
covar = invert(M)
coeffs = reform(covar##transpose([total(yfit*wfit), total(xfit*yfit*wfit)]))
yf = coeffs[0]+coeffs[1]*xfit
chisq = total((yfit-yf)^2)/(n_elements(xfit)-2)
endif else begin
M = [[total(wfit), total(xfit*wfit), total(xfit^2*wfit)], $
[total(xfit*wfit), total(xfit^2*wfit), total(xfit^3*wfit)], $
[total(xfit^2*wfit), total(xfit^3*wfit), total(xfit^4*wfit)]]
covar = invert(M)
coeffs = $
reform(covar##transpose([total(yfit*wfit), total(xfit*yfit*wfit) $
, total(xfit^2*yfit*wfit)]))
yf = coeffs[0]+coeffs[1]*xfit+coeffs[2]*xfit^2
chisq = total((yfit-yf)^2)/(n_elements(xfit)-2)
endelse
extrap_value = coeffs[0, *] + coeffs[1, *]*targett
scatter = sqrt(chisq*covar[1, 1]*targett^2+chisq*covar[0, 0])/extrap_value
if (keyword_set(square)) then begin
extrap_value = extrap_value + coeffs[2, *]*targett^2
scatter = sqrt(chisq*covar[0, 0]+chisq*covar[1, 1]*targett^2+$
covar[2, 2]*targett^4)/extrap_value
endif
endelse
return, extrap_value
end ; OF EXTRAP