-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwrite_results.py
49 lines (41 loc) · 1.75 KB
/
write_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from typing import List, Dict
import json
import jsonlines
import numpy as np
def get_acc(objects) -> float:
predictions: List[float] = []
for obj in objects:
predictions.append(float(obj["pred"] == obj["label"]))
return np.mean(predictions)
def get_scores_normal(model_name: str, seeds: List[int] = [42, 101, 987, 64, 923]) -> Dict[str, float]:
runs = []
for seed in seeds:
with jsonlines.open(f"./results/{model_name}_seed_{seed}.jsonl", 'r') as f:
samples = [s for s in f]
runs.append(samples)
scores = [get_acc(r) for r in runs]
return {"mean": round(np.mean(scores)*100, 2), "std": round(np.std(scores)*100, 2)}
def get_scores_system(model_name: str, hop) -> Dict[str, float]:
runs = []
print(model_name)
for fold in [0, 1, 2, 3]:
with jsonlines.open(f"./results/{model_name}_super_system_round_{rr}_hop_{hop}_fold_{fold}_seed_42.jsonl", 'r') as f:
samples = [s for s in f]
runs.append(samples)
scores = [get_acc(r) for r in runs]
print(scores)
return {"mean": round(np.mean(scores)*100, 2), "std": round(np.std(scores)*100, 2)}
if __name__ == "__main__":
print("Write results")
models = ["disjoint", "grounded", "gnn", "unidirectional", "bidirectional"]
tests = ["subst_2_hop", "subst_3_hop", "subst_4_hop", "prod_T2a3_V4", "prod_T2a4_V3", "prod_T3a4_V2"]
results = {}
for model in models:
for test in tests:
test_path = f"{model}_{test}"
results[test_path] = get_scores_normal(test_path)
for hop in [2, 3, 4]:
results[f"{model}_system_{hop}_hop"] = get_scores_system(model, hop)
print(results)
with open("results.json", "w") as f:
json.dump(results, f, indent=4)