forked from terrytangyuan/tensorflow-in-practice-code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path8_3_Value_Network.py
executable file
·215 lines (167 loc) · 8.56 KB
/
8_3_Value_Network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#%%
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import numpy as np
import random
import tensorflow as tf
import os
%matplotlib inline
from gridworld import gameEnv
env = gameEnv(size=5)
class Qnetwork():
def __init__(self,h_size):
#The network recieves a frame from the game, flattened into an array.
#It then resizes it and processes it through four convolutional layers.
self.scalarInput = tf.placeholder(shape=[None,21168],dtype=tf.float32)
self.imageIn = tf.reshape(self.scalarInput,shape=[-1,84,84,3])
self.conv1 = tf.contrib.layers.convolution2d( \
inputs=self.imageIn,num_outputs=32,kernel_size=[8,8],stride=[4,4],padding='VALID', biases_initializer=None)
self.conv2 = tf.contrib.layers.convolution2d( \
inputs=self.conv1,num_outputs=64,kernel_size=[4,4],stride=[2,2],padding='VALID', biases_initializer=None)
self.conv3 = tf.contrib.layers.convolution2d( \
inputs=self.conv2,num_outputs=64,kernel_size=[3,3],stride=[1,1],padding='VALID', biases_initializer=None)
self.conv4 = tf.contrib.layers.convolution2d( \
inputs=self.conv3,num_outputs=512,kernel_size=[7,7],stride=[1,1],padding='VALID', biases_initializer=None)
#We take the output from the final convolutional layer and split it into separate advantage and value streams.
self.streamAC,self.streamVC = tf.split(self.conv4,2,3)
self.streamA = tf.contrib.layers.flatten(self.streamAC)
self.streamV = tf.contrib.layers.flatten(self.streamVC)
self.AW = tf.Variable(tf.random_normal([h_size//2,env.actions]))
self.VW = tf.Variable(tf.random_normal([h_size//2,1]))
self.Advantage = tf.matmul(self.streamA,self.AW)
self.Value = tf.matmul(self.streamV,self.VW)
#Then combine them together to get our final Q-values.
self.Qout = self.Value + tf.subtract(self.Advantage,tf.reduce_mean(self.Advantage,reduction_indices=1,keep_dims=True))
self.predict = tf.argmax(self.Qout,1)
#Below we obtain the loss by taking the sum of squares difference between the target and prediction Q values.
self.targetQ = tf.placeholder(shape=[None],dtype=tf.float32)
self.actions = tf.placeholder(shape=[None],dtype=tf.int32)
self.actions_onehot = tf.one_hot(self.actions,env.actions,dtype=tf.float32)
self.Q = tf.reduce_sum(tf.multiply(self.Qout, self.actions_onehot), reduction_indices=1)
self.td_error = tf.square(self.targetQ - self.Q)
self.loss = tf.reduce_mean(self.td_error)
self.trainer = tf.train.AdamOptimizer(learning_rate=0.0001)
self.updateModel = self.trainer.minimize(self.loss)
class experience_buffer():
def __init__(self, buffer_size = 50000):
self.buffer = []
self.buffer_size = buffer_size
def add(self,experience):
if len(self.buffer) + len(experience) >= self.buffer_size:
self.buffer[0:(len(experience)+len(self.buffer))-self.buffer_size] = []
self.buffer.extend(experience)
def sample(self,size):
return np.reshape(np.array(random.sample(self.buffer,size)),[size,5])
def processState(states):
return np.reshape(states,[21168])
def updateTargetGraph(tfVars,tau):
total_vars = len(tfVars)
op_holder = []
for idx,var in enumerate(tfVars[0:total_vars//2]):
op_holder.append(tfVars[idx+total_vars//2].assign((var.value()*tau) + ((1-tau)*tfVars[idx+total_vars//2].value())))
return op_holder
def updateTarget(op_holder,sess):
for op in op_holder:
sess.run(op)
batch_size = 32 #How many experiences to use for each training step.
update_freq = 4 #How often to perform a training step.
y = .99 #Discount factor on the target Q-values
startE = 1 #Starting chance of random action
endE = 0.1 #Final chance of random action
anneling_steps = 10000. #How many steps of training to reduce startE to endE.
num_episodes = 10000#How many episodes of game environment to train network with.
pre_train_steps = 10000 #How many steps of random actions before training begins.
max_epLength = 50 #The max allowed length of our episode.
load_model = False #Whether to load a saved model.
path = "./dqn" #The path to save our model to.
h_size = 512 #The size of the final convolutional layer before splitting it into Advantage and Value streams.
tau = 0.001 #Rate to update target network toward primary network
tf.reset_default_graph()
mainQN = Qnetwork(h_size)
targetQN = Qnetwork(h_size)
init = tf.global_variables_initializer()
trainables = tf.trainable_variables()
targetOps = updateTargetGraph(trainables,tau)
myBuffer = experience_buffer()
#Set the rate of random action decrease.
e = startE
stepDrop = (startE - endE)/anneling_steps
#create lists to contain total rewards and steps per episode
rList = []
total_steps = 0
#Make a path for our model to be saved in.
saver = tf.train.Saver()
if not os.path.exists(path):
os.makedirs(path)
#%%
with tf.Session() as sess:
if load_model == True:
print('Loading Model...')
ckpt = tf.train.get_checkpoint_state(path)
saver.restore(sess,ckpt.model_checkpoint_path)
sess.run(init)
updateTarget(targetOps,sess) #Set the target network to be equal to the primary network.
for i in range(num_episodes+1):
episodeBuffer = experience_buffer()
#Reset environment and get first new observation
s = env.reset()
s = processState(s)
d = False
rAll = 0
j = 0
#The Q-Network
while j < max_epLength: #If the agent takes longer than 200 moves to reach either of the blocks, end the trial.
j+=1
#Choose an action by greedily (with e chance of random action) from the Q-network
if np.random.rand(1) < e or total_steps < pre_train_steps:
a = np.random.randint(0,4)
else:
a = sess.run(mainQN.predict,feed_dict={mainQN.scalarInput:[s]})[0]
s1,r,d = env.step(a)
s1 = processState(s1)
total_steps += 1
episodeBuffer.add(np.reshape(np.array([s,a,r,s1,d]),[1,5])) #Save the experience to our episode buffer.
if total_steps > pre_train_steps:
if e > endE:
e -= stepDrop
if total_steps % (update_freq) == 0:
trainBatch = myBuffer.sample(batch_size) #Get a random batch of experiences.
#Below we perform the Double-DQN update to the target Q-values
A = sess.run(mainQN.predict,feed_dict={mainQN.scalarInput:np.vstack(trainBatch[:,3])})
Q = sess.run(targetQN.Qout,feed_dict={targetQN.scalarInput:np.vstack(trainBatch[:,3])})
doubleQ = Q[range(batch_size),A]
targetQ = trainBatch[:,2] + y*doubleQ
#Update the network with our target values.
_ = sess.run(mainQN.updateModel, \
feed_dict={mainQN.scalarInput:np.vstack(trainBatch[:,0]),mainQN.targetQ:targetQ, mainQN.actions:trainBatch[:,1]})
updateTarget(targetOps,sess) #Set the target network to be equal to the primary network.
rAll += r
s = s1
if d == True:
break
#Get all experiences from this episode and discount their rewards.
myBuffer.add(episodeBuffer.buffer)
rList.append(rAll)
#Periodically save the model.
if i>0 and i % 25 == 0:
print('episode',i,', average reward of last 25 episode',np.mean(rList[-25:]))
if i>0 and i % 1000 == 0:
saver.save(sess,path+'/model-'+str(i)+'.cptk')
print("Saved Model")
saver.save(sess,path+'/model-'+str(i)+'.cptk')
#%%
rMat = np.resize(np.array(rList),[len(rList)//100,100])
rMean = np.average(rMat,1)
plt.plot(rMean)