-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_tip_finetune.py
599 lines (525 loc) · 27.7 KB
/
main_tip_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
"""
Utilities for training, testing and caching results
for HICO-DET and V-COCO evaluations.
Fred Zhang <frederic.zhang@anu.edu.au>
The Australian National University
Australian Centre for Robotic Vision
"""
import os
import sys
import torch
import random
import warnings
import argparse
import numpy as np
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.utils.data import DataLoader, DistributedSampler
from torchvision.ops.boxes import box_iou
sys.path.append('detr')
from upt_tip_cache_model_free_finetune_distill3 import build_detector
from utils_tip_cache_and_union_finetune import custom_collate, CustomisedDLE, DataFactory
import pdb
from hico_text_label import hico_unseen_index
import vcoco_text_label, hico_text_label
# from thop import profile
warnings.filterwarnings("ignore")
def tranverse_and_get_hoi_cooccurence(dataset):
category = dataset.num_interation_cls
hoi_cooccurence = torch.zeros(category, category)
for anno in dataset._anno:
num_gt = len(anno['hoi'])
for i in range(num_gt):
for j in range(i+1, num_gt):
## need to judge if anno['hoi'][i] and anno['hoi'][j] are the same pair
h_iou = box_iou(torch.as_tensor(anno['boxes_h'][i:i+1]), torch.as_tensor(anno['boxes_h'][j:j+1]))
o_iou = box_iou(torch.as_tensor(anno['boxes_o'][i:i+1]), torch.as_tensor(anno['boxes_o'][j:j+1]))
if min(h_iou.item(), o_iou.item()) > 0.5:
if anno['hoi'][i] == anno['hoi'][j]:
continue
hoi_cooccurence[anno['hoi'][i],anno['hoi'][j]] += 1
hoi_cooccurence[anno['hoi'][j],anno['hoi'][i]] += 1
hoi_cooccurence = hoi_cooccurence.t() / (hoi_cooccurence.sum(dim=-1) + 1e-9)
hoi_cooccurence = hoi_cooccurence.t()
return hoi_cooccurence
def hico_class_corr():
"""
Class correspondence matrix in zero-based index
[
[hoi_idx, obj_idx, verb_idx],
...
]
Returns:
list[list[3]]
"""
class_corr = []
for i, (k, v) in enumerate(hico_text_label.hico_text_label.items()):
class_corr.append([i, k[1], k[0]])
return class_corr
def vcoco_class_corr():
"""
Class correspondence matrix in zero-based index
[
[hoi_idx, obj_idx, verb_idx],
...
]
Returns:
list[list[3]]
"""
class_corr = []
for i, (k, v) in enumerate(vcoco_text_label.vcoco_hoi_text_label.items()):
class_corr.append([i, k[1], k[0]])
return class_corr
def vcoco_object_n_verb_to_interaction(num_object_cls, num_action_cls, class_corr):
"""
The interaction classes corresponding to an object-verb pair
HICODet.object_n_verb_to_interaction[obj_idx][verb_idx] gives interaction class
index if the pair is valid, None otherwise
Returns:
list[list[117]]
"""
lut = np.full([num_object_cls, num_action_cls], None)
for i, j, k in class_corr:
lut[j, k] = i
return lut.tolist()
def _get_model_analysis_input(data_loader):
for images, targets in data_loader:
return images, targets
def main(rank, args):
dist.init_process_group(
backend="nccl",
init_method="env://",
world_size=args.world_size,
rank=rank
)
# Fix seed
seed = args.seed + dist.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.cuda.set_device(rank)
args.clip_model_name = args.clip_dir_vit.split('/')[-1].split('.')[0]
if args.clip_model_name == 'ViT-B-16':
args.clip_model_name = 'ViT-B/16'
elif args.clip_model_name == 'ViT-L-14':
args.clip_model_name = 'ViT-L/14'
elif args.clip_model_name == 'ViT-L-14-336px':
args.clip_model_name = 'ViT-L/14@336px'
trainset = DataFactory(name=args.dataset, partition=args.partitions[0], data_root=args.data_root, clip_model_name=args.clip_model_name, zero_shot=args.zs, zs_type=args.zs_type, num_classes=args.num_classes)
testset = DataFactory(name=args.dataset, partition=args.partitions[1], data_root=args.data_root, clip_model_name=args.clip_model_name)
verb2interaction = None
# trainset[0][1]: dict_keys(['boxes_h', 'boxes_o', 'hoi', 'object', 'verb', 'orig_size', 'labels', 'size', 'filename'])
# trainset[0][0]: (torch.Size([3, 814, 640]), torch.Size([3, 224, 224]))
if args.dataset == 'vcoco':
class_corr = vcoco_class_corr()
trainset.dataset.class_corr = class_corr
testset.dataset.class_corr = class_corr
object_n_verb_to_interaction = vcoco_object_n_verb_to_interaction(num_object_cls=len(trainset.dataset.objects), num_action_cls=len(trainset.dataset.actions), class_corr=class_corr)
trainset.dataset.object_n_verb_to_interaction = object_n_verb_to_interaction
testset.dataset.object_n_verb_to_interaction = object_n_verb_to_interaction
# args.hoi_cooccurence = tranverse_and_get_hoi_cooccurence(trainset.dataset)
if args.training_set_ratio < 0.9:
print(f'[INFO]: using {args.training_set_ratio} trainset to train!')
sub_trainset, valset = trainset.dataset.split(args.training_set_ratio)
trainset.dataset = sub_trainset
trainset.keep = [i for i in range(len(sub_trainset))]
train_loader = DataLoader(
dataset=trainset,
collate_fn=custom_collate, batch_size=args.batch_size,
num_workers=args.num_workers, pin_memory=False, drop_last=True,
sampler=DistributedSampler(
trainset,
num_replicas=args.world_size,
rank=rank)
)
test_loader = DataLoader(
dataset=testset,
collate_fn=custom_collate, batch_size=1,
num_workers=args.num_workers, pin_memory=False, drop_last=False,
sampler=torch.utils.data.SequentialSampler(testset)
)
args.human_idx = 0
object_n_verb_to_interaction = train_loader.dataset.dataset.object_n_verb_to_interaction
if args.dataset == 'hicodet':
if args.num_classes == 117:
object_to_target = train_loader.dataset.dataset.object_to_verb
elif args.num_classes == 600:
object_to_target = train_loader.dataset.dataset.object_to_interaction
if args.zs:
object_to_target = train_loader.dataset.zs_object_to_target
elif args.dataset == 'vcoco':
if args.num_classes == 24:
object_to_target = list(train_loader.dataset.dataset.object_to_action.values())
elif args.num_classes == 236:
raise NotImplementedError
print('[INFO]: num_classes', args.num_classes)
if args.dataset == 'vcoco':
num_anno = None
else:
num_anno = torch.as_tensor(trainset.dataset.anno_interaction)
if args.num_classes == 117:
num_anno = torch.as_tensor(trainset.dataset.anno_action)
upt = build_detector(args, object_to_target, object_n_verb_to_interaction=object_n_verb_to_interaction, clip_model_path=args.clip_dir_vit, num_anno=num_anno, verb2interaction=verb2interaction)
if args.dataset == 'hicodet' and args.eval: ## after building model, manually change obj_to_target
if args.num_classes == 117:
upt.object_class_to_target_class = test_loader.dataset.dataset.object_to_verb
else:
upt.object_class_to_target_class = test_loader.dataset.dataset.object_to_interaction
if args.pseudo_label: ## if we generate pseudo label for unseen verbs,
pdb.set_trace()
upt.object_class_to_target_class = test_loader.dataset.dataset.object_to_verb
# input1 = _get_model_analysis_input(train_loader)
# device = torch.device("cpu")
# upt.init_adapter_union_weight(device)
# flops, params = profile(upt, inputs=(input1[0], input1[1]))
# print('FLOPs = ' + str(flops/1000**3) + 'G')
# print('Params = ' + str(params/1000**2) + 'M')
if os.path.exists(args.resume):
print(f"===>>> Rank {rank}: continue from saved checkpoint {args.resume}")
checkpoint = torch.load(args.resume, map_location='cpu')
upt.load_state_dict(checkpoint['model_state_dict'])
else:
print(f"=> Rank {rank}: start from a randomly initialised model")
if args.zs and args.fill_zs_verb_type == 1:
upt.refresh_unseen_verb_cache_mem() ## whether refresh unseen weights after loading weights (during test)
engine = CustomisedDLE(
upt, train_loader,
max_norm=args.clip_max_norm,
num_classes=args.num_classes,
print_interval=args.print_interval,
find_unused_parameters=True,
cache_dir=args.output_dir,
)
if args.vis_tor != 1 and (args.eval or args.cache):
upt.logit_scale_HO = torch.nn.Parameter(upt.logit_scale_HO * args.vis_tor)
upt.logit_scale_U = torch.nn.Parameter(upt.logit_scale_U * args.vis_tor)
if args.tpt:
engine = CustomisedDLE(
upt, test_loader_for_tpt,
max_norm=args.clip_max_norm,
num_classes=args.num_classes,
print_interval=args.print_interval,
find_unused_parameters=True,
cache_dir=args.output_dir,
)
if args.cache:
print("output path:", args.output_dir)
if args.prompt_learning:
upt.init_adapter_union_weight(torch.device(args.device))
if args.dataset == 'hicodet':
engine.cache_hico(test_loader, args.output_dir)
elif args.dataset == 'vcoco':
# print("[!NOTE!]: using test_loader_of_trainingset")
engine.cache_vcoco(test_loader, args.output_dir)
return
if args.eval:
device = torch.device(args.device)
upt.eval()
if args.prompt_learning:
upt.init_adapter_union_weight(device)
if args.dataset == 'vcoco':
raise NotImplementedError(f"Evaluation on V-COCO has not been implemented.")
if args.eval_trainset:
sys.path.append('detr')
import detr.datasets.transforms_clip as T
trainset.transforms = T.Compose([
T.RandomResize([800], max_size=1333),
])
test_loader = DataLoader(
dataset=trainset,
collate_fn=custom_collate, batch_size=1,
num_workers=args.num_workers, pin_memory=False, drop_last=False,
sampler=torch.utils.data.SequentialSampler(trainset)
)
ap = engine.test_hico(test_loader, args)
# Fetch indices for rare and non-rare classes
num_anno = torch.as_tensor(trainset.dataset.anno_interaction)
rare = torch.nonzero(num_anno < 10).squeeze(1)
non_rare = torch.nonzero(num_anno >= 10).squeeze(1)
print(
f"The mAP is {ap.mean()*100:.2f},"
f" rare: {ap[rare].mean()*100:.2f},"
f" none-rare: {ap[non_rare].mean()*100:.2f},"
)
if args.zs:
zs_hoi_idx = hico_unseen_index[args.zs_type]
print(f'>>> zero-shot setting({args.zs_type}!!)')
ap_unseen = []
ap_seen = []
for i, value in enumerate(ap):
if i in zs_hoi_idx:
ap_unseen.append(value)
else:
ap_seen.append(value)
ap_unseen = torch.as_tensor(ap_unseen).mean()
ap_seen = torch.as_tensor(ap_seen).mean()
print(
f"full mAP: {ap.mean()*100:.2f}",
f"unseen: {ap_unseen*100:.2f}",
f"seen: {ap_seen*100:.2f}",
)
print(args.resume) ## import pickle; pickle.dump({'ap': all_ap_verb, 'zs_flag': all_zs_flag_verb, 'feat': all_feat_verb}, open('analysis/zs_unseen_verb.p', 'wb'))
return
for p in upt.detector.parameters():
p.requires_grad = False
for n, p in upt.clip_head.named_parameters():
# if n.startswith('image_encoder.positional_embedding') or n.startswith('image_encoder.ln_post') or n.startswith('image_encoder.proj'):
# p.requires_grad = True
if 'adaptermlp' in n or "prompt_learner" in n:
p.requires_grad = True
else:
p.requires_grad = False
for n, p in upt.named_parameters():
if p.requires_grad:
print(n)
if args.frozen_classifier != None:
frozen_name_lst = []
if 'HO' in args.frozen_classifier:
frozen_name_lst.append('adapter_HO')
if 'U' in args.frozen_classifier:
frozen_name_lst.append('adapter_U')
if 'T' in args.frozen_classifier:
frozen_name_lst.append('adapter_union_weight')
for n, p in upt.named_parameters():
if 'clip_head' in n or 'detector' in n:
continue
if n.split('.')[0] in frozen_name_lst:
p.requires_grad = False
if args.label_learning:
for n, p in upt.named_parameters():
if 'clip_head' in n or 'detector' in n:
continue
if 'label_' in n:
p.requires_grad = True
others = [n for n, p in upt.named_parameters()
if p.requires_grad and 'clip_head' not in n]
param_dicts = [
{
"params": [p for n, p in upt.clip_head.named_parameters()
if p.requires_grad]
},
{ ## others
"params": [p for n, p in upt.named_parameters()
if p.requires_grad and 'clip_head' not in n],
"lr": args.lr_head,
},
]
# print([n for n, p in upt.named_parameters()
# if p.requires_grad])
n_parameters = sum(p.numel() for p in upt.parameters() if p.requires_grad)
print('number of trainable params:', n_parameters, f'{n_parameters/1e6:.3f}M')
n_parameters = sum(p.numel() for p in upt.parameters())
print('number of all params:', n_parameters, f'{n_parameters/1e6:.3f}M')
optim = torch.optim.AdamW(
param_dicts, lr=args.lr_vit,
weight_decay=args.weight_decay
)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optim, args.lr_drop)
if args.resume:
optim.load_state_dict(checkpoint['optim_state_dict'])
lr_scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
epoch=checkpoint['epoch']
iteration = checkpoint['iteration']
scaler = torch.cuda.amp.GradScaler(enabled=True)
scaler.load_state_dict(checkpoint['scaler_state_dict'])
# Override optimiser and learning rate scheduler
engine.update_state_key(optimizer=optim, lr_scheduler=lr_scheduler, epoch=epoch,iteration=iteration, scaler=scaler)
else:
engine.update_state_key(optimizer=optim, lr_scheduler=lr_scheduler)
# with torch.autograd.set_detect_anomaly(True):
import json
with open(os.path.join(args.output_dir, 'args.txt'), 'w') as f:
json.dump(args.__dict__, f, indent=2)
f.close()
engine(args.epochs)
@torch.no_grad()
def sanity_check(args):
dataset = DataFactory(name='hicodet', partition=args.partitions[0], data_root=args.data_root)
args.human_idx = 0; args.num_classes = 117
object_to_target = dataset.dataset.object_to_verb
upt = build_detector(args, object_to_target)
if args.eval:
upt.eval()
image, target = dataset[0]
outputs = upt([image], [target])
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--lr-head', default=1e-3, type=float)
parser.add_argument('--lr-vit', default=1e-3, type=float)
parser.add_argument('--batch-size', default=8, type=int)
parser.add_argument('--weight-decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=15, type=int)
parser.add_argument('--lr-drop', default=10, type=int)
parser.add_argument('--clip-max-norm', default=0.1, type=float)
parser.add_argument('--backbone', default='resnet50', type=str)
parser.add_argument('--dilation', action='store_true')
parser.add_argument('--position-embedding', default='sine', type=str, choices=('sine', 'learned'))
parser.add_argument('--repr-dim', default=512, type=int)
parser.add_argument('--hidden-dim', default=256, type=int)
parser.add_argument('--enc-layers', default=6, type=int)
parser.add_argument('--dec-layers', default=6, type=int)
parser.add_argument('--dim-feedforward', default=2048, type=int)
parser.add_argument('--dropout', default=0.1, type=float)
parser.add_argument('--nheads', default=8, type=int)
parser.add_argument('--num-queries', default=100, type=int)
parser.add_argument('--pre-norm', action='store_true')
parser.add_argument('--no-aux-loss', dest='aux_loss', action='store_false')
parser.add_argument('--set-cost-class', default=1, type=float)
parser.add_argument('--set-cost-bbox', default=5, type=float)
parser.add_argument('--set-cost-giou', default=2, type=float)
parser.add_argument('--bbox-loss-coef', default=5, type=float)
parser.add_argument('--giou-loss-coef', default=2, type=float)
parser.add_argument('--eos-coef', default=0.1, type=float,
help="Relative classification weight of the no-object class")
parser.add_argument('--alpha', default=0.5, type=float)
parser.add_argument('--gamma', default=0.2, type=float)
parser.add_argument('--dataset', default='hicodet', type=str)
parser.add_argument('--partitions', nargs='+', default=['train2015', 'test2015'], type=str)
parser.add_argument('--num-workers', default=2, type=int)
parser.add_argument('--data-root', default='./hicodet')
# training parameters
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--port', default='1233', type=str)
parser.add_argument('--seed', default=66, type=int)
parser.add_argument('--pretrained', default='', help='Path to a pretrained detector')
parser.add_argument('--resume', default='', help='Resume from a model')
parser.add_argument('--output-dir', default='checkpoints')
parser.add_argument('--print-interval', default=500, type=int)
parser.add_argument('--world-size', default=1, type=int)
parser.add_argument('--eval', action='store_true')
parser.add_argument('--cache', action='store_true')
parser.add_argument('--sanity', action='store_true')
parser.add_argument('--box-score-thresh', default=0.2, type=float)
parser.add_argument('--fg-iou-thresh', default=0.5, type=float)
parser.add_argument('--min-instances', default=3, type=int)
parser.add_argument('--max-instances', default=15, type=int)
parser.add_argument('--visual_mode', default='vit', type=str)
# add CLIP model resenet
# parser.add_argument('--clip_dir', default='./checkpoints/pretrained_clip/RN50.pt', type=str)
# parser.add_argument('--clip_visual_layers', default=[3, 4, 6, 3], type=list)
# parser.add_argument('--clip_visual_output_dim', default=1024, type=int)
# parser.add_argument('--clip_visual_input_resolution', default=1344, type=int)
# parser.add_argument('--clip_visual_width', default=64, type=int)
# parser.add_argument('--clip_visual_patch_size', default=64, type=int)
# parser.add_argument('--clip_text_output_dim', default=1024, type=int)
# parser.add_argument('--clip_text_transformer_width', default=512, type=int)
# parser.add_argument('--clip_text_transformer_heads', default=8, type=int)
# parser.add_argument('--clip_text_transformer_layers', default=12, type=int)
# parser.add_argument('--clip_text_context_length', default=13, type=int)
#### add CLIP vision transformer
parser.add_argument('--clip_dir_vit', default='./checkpoints/pretrained_clip/ViT-B-16.pt', type=str)
### ViT-L/14@336px START: emb_dim: 768
# >>> vision_width: 1024, vision_patch_size(conv's kernel-size&&stride-size): 14,
# >>> vision_layers(#layers in vision-transformer): 24 , image_resolution:336;
# >>> transformer_width:768, transformer_layers: 12, transformer_heads:12
parser.add_argument('--clip_visual_layers_vit', default=24, type=list)
parser.add_argument('--clip_visual_output_dim_vit', default=768, type=int)
parser.add_argument('--clip_visual_input_resolution_vit', default=336, type=int)
parser.add_argument('--clip_visual_width_vit', default=1024, type=int)
parser.add_argument('--clip_visual_patch_size_vit', default=14, type=int)
# parser.add_argument('--clip_text_output_dim_vit', default=512, type=int)
parser.add_argument('--clip_text_transformer_width_vit', default=768, type=int)
parser.add_argument('--clip_text_transformer_heads_vit', default=12, type=int)
parser.add_argument('--clip_text_transformer_layers_vit', default=12, type=int)
# ---END----ViT-L/14@336px----END----
### ViT-B-16 START
# parser.add_argument('--clip_visual_layers_vit', default=12, type=list)
# parser.add_argument('--clip_visual_output_dim_vit', default=512, type=int)
# parser.add_argument('--clip_visual_input_resolution_vit', default=224, type=int)
# parser.add_argument('--clip_visual_width_vit', default=768, type=int)
# parser.add_argument('--clip_visual_patch_size_vit', default=16, type=int)
# # parser.add_argument('--clip_text_output_dim_vit', default=512, type=int)
# parser.add_argument('--clip_text_transformer_width_vit', default=512, type=int)
# parser.add_argument('--clip_text_transformer_heads_vit', default=8, type=int)
# parser.add_argument('--clip_text_transformer_layers_vit', default=12, type=int)
# ---END----ViT-B-16-----END-----
parser.add_argument('--clip_text_context_length_vit', default=77, type=int) # 13 -77
parser.add_argument('--use_insadapter', action='store_true')
parser.add_argument('--use_distill', action='store_true')
parser.add_argument('--use_consistloss', action='store_true')
parser.add_argument('--use_mean', action='store_true') # 13 -77
parser.add_argument('--logits_type', default='H+O+T', type=str) # 13 -77 # text_add_visual, visual
parser.add_argument('--num_shot', default='1', type=int) # 13 -77 # text_add_visual, visual
parser.add_argument('--file1', default='./hicodet_pkl_files/hicodet_union_embeddings_cachemodel_crop_padding_zeros_vit336.p',type=str)
parser.add_argument('--prior_type', type=str, default='cbe', choices=['cbe', 'cb', 'ce', 'be', 'c', 'b', 'e'])
parser.add_argument('--obj_affordance', action='store_true') ## use affordance embedding of objects
parser.add_argument('--training_set_ratio', type=float, default=1.0)
parser.add_argument('--frozen_classifier', type=str, default=None)
parser.add_argument('--zs', action='store_true') ## zero-shot
parser.add_argument('--hyper_lambda', type=float, default=2.8)
parser.add_argument('--use_weight_pred', action='store_true')
parser.add_argument('--zs_type', type=str, default='unseen_verb', choices=['rare_first', 'non_rare_first', 'unseen_verb', 'unseen_object', 'uc0', 'uc1', 'uc2', 'uc3', 'uc4'])
parser.add_argument('--fill_zs_verb_type', type=int, default=0,) # (for init) 0: random; 1: weighted_sum,
parser.add_argument('--pseudo_label', action='store_true')
parser.add_argument('--tpt', action='store_true')
parser.add_argument('--vis_tor', type=float, default=1.0)
parser.add_argument('--adapter_num_layers', type=int, default=1)
parser.add_argument('--featmap_dropout_rate', type=float, default=0.2)
parser.add_argument('--bottleneck', type=int, default=64)
## prompt learning
parser.add_argument('--N_CTX', type=int, default=24) # number of context vectors
parser.add_argument('--CSC', type=bool, default=False) # class-specific context
parser.add_argument('--CTX_INIT', type=str, default='') # initialization words
parser.add_argument('--CLASS_TOKEN_POSITION', type=str, default='end') # # 'middle' or 'end' or 'front'
parser.add_argument('--prompt_learning', action='store_true')
parser.add_argument('--use_templates', action='store_true')
parser.add_argument('--LA', action='store_true') ## Language Aware
parser.add_argument('--LA_weight', default=1.0, type=float) ## Language Aware(loss weight)
parser.add_argument('--feat_mask_type', type=int, default=0,) # 0: dropout(random mask); 1: None
parser.add_argument('--num_classes', type=int, default=117,)
parser.add_argument('--prior_method', type=int, default=6) ## 0: instance-wise, 1: pair-wise, 2: learnable 3: shared multi-modal prompts 4: co-coop(w/o use_ins_adapter) 5: use global spatial prior 6: update priors with the global prior
parser.add_argument('--vis_prompt_num', type=int, default=50) ## (prior_method == learnable)
parser.add_argument('--box_proj', type=int, default=0,) ## 0: None; 1: f_u = ROI-feat + MLP(uni-box)
parser.add_argument('--n_gsp', type=int, default=10) ## (prior_method == learnable)
parser.add_argument('--adapter_pos', type=str, default='all', choices=['all', 'front', 'end', 'random', 'last'])
parser.add_argument('--use_multi_hot', action='store_true')
parser.add_argument('--label_learning', action='store_true')
parser.add_argument('--label_choice', default='random', choices=['random', 'single_first', 'multi_first', 'single+multi', 'rare_first', 'non_rare_first', 'rare+non_rare'])
parser.add_argument('--use_mlp_proj', action='store_true')
parser.add_argument('--use_text_adapter', action='store_true')
parser.add_argument('--eval_trainset', action='store_true')
parser.add_argument('--vision_regularize', action='store_true')
parser.add_argument('--repeat_factor_sampling', default=False, type=lambda x: (str(x).lower() == 'true'),
help='apply repeat factor sampling to increase the rate at which tail categories are observed')
## **************** arguments for deformable detr **************** ##
parser.add_argument('--d_detr', default=False, type=lambda x: (str(x).lower() == 'true'),)
parser.add_argument('--lr_backbone', default=2e-5, type=float)
# * Segmentation
parser.add_argument('--masks', action='store_true',
help="Train segmentation head if the flag is provided")
# Variants of Deformable DETR
parser.add_argument('--with_box_refine', default=False, action='store_true')
parser.add_argument('--two_stage', default=False, action='store_true')
# Model parameters
parser.add_argument('--frozen_weights', type=str, default=None,
help="Path to the pretrained model. If set, only the mask head will be trained")
# * Backbone
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
parser.add_argument('--position_embedding_scale', default=2 * np.pi, type=float,
help="position / size * scale")
parser.add_argument('--num_feature_levels', default=4, type=int, help='number of feature levels')
# * Transformer
parser.add_argument('--dec_n_points', default=4, type=int)
parser.add_argument('--enc_n_points', default=4, type=int)
# * Loss coefficients
parser.add_argument('--mask_loss_coef', default=1, type=float)
parser.add_argument('--dice_loss_coef', default=1, type=float)
parser.add_argument('--cls_loss_coef', default=2, type=float)
parser.add_argument('--bbox_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=2, type=float)
parser.add_argument('--focal_alpha', default=0.25, type=float)
## **************** arguments for deformable detr **************** ##
args = parser.parse_args()
print(args)
if args.sanity:
sanity_check(args)
sys.exit()
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = args.port
# mp.spawn(main, nprocs=args.world_size, args=(args,))
if args.world_size==1:
main(0,args)
else:
mp.spawn(main, nprocs=args.world_size, args=(args,))