-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_hcrn.py
366 lines (296 loc) · 15.8 KB
/
train_hcrn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import json
import os, sys
import torch
import torch.optim as optim
import torch.nn as nn
import numpy as np
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
import sys, os
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
from datetime import datetime
import argparse, time, pickle
from yaml import parse
# from dataset.dataset import LEMMA, collate_func
from dataset.hcrn_dataset import LEMMA, collate_func
from utils.utils import ReasongingTypeAccCalculator
import model.HCRN.model.HCRN as HCRN
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--basedir", type=str, default='hcrn_logs',
help='where to store ckpts and logs')
parser.add_argument("--train_data_file_path", type=str,
default='{}/formatted_train_qas_encode.json',
)
parser.add_argument("--test_data_file_path", type=str,
default='{}/formatted_test_qas_encode.json',
)
parser.add_argument("--val_data_file_path", type=str,
default='{}/formatted_val_qas_encode.json',
)
parser.add_argument("--app_feat_path", type=str,
default="data/hcrn_data/lemma-qa_appearance_feat.h5")
parser.add_argument("--motion_feat_path", type=str,
default="data/hcrn_data/lemma_qa_motion_feat.h5")
parser.add_argument('--answer_set_path', type=str, default='{}/answer_set.txt')
parser.add_argument("--batch_size", type=int, default=32, )
parser.add_argument("--nepoch", type=int, default=60,
help='num of total epoches')
parser.add_argument("--lr", type=float, default=1e-4,
help='')
parser.add_argument("--i_val", type=int, default=20000,
help='frequency of console printout and metric loggin')
parser.add_argument("--i_test", type=int, default=4000,
help='frequency of console printout and metric loggin')
parser.add_argument("--i_print", type=int, default=60,
help='frequency of console printout and metric loggin')
parser.add_argument("--i_weight", type=int, default=4000,
help='frequency of weight ckpt saving')
parser.add_argument('--output_dim', type=int, default=1)
parser.add_argument('--test_only', default=0, type=int)
parser.add_argument('--reload_model_path', default='', type=str, help='model_path')
parser.add_argument('--question_pt_path', type=str, default='{}/glove.pt')
parser.add_argument('--without_visual', type=int, default=0)
parser.add_argument('--base_data_dir', type=str, default='data')
args = parser.parse_args()
return args
def train(args):
device = args.device
train_dataset = LEMMA(args.train_data_file_path.format(args.base_data_dir), 'train',
app_feature_h5=args.app_feat_path,
motion_feature_h5=args.motion_feat_path)
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, collate_fn=collate_func)
val_dataset = LEMMA(args.val_data_file_path.format(args.base_data_dir), 'val',
app_feature_h5=args.app_feat_path,
motion_feature_h5=args.motion_feat_path)
val_dataloader = DataLoader(val_dataset, batch_size=128, shuffle=True, collate_fn=collate_func)
test_dataset = LEMMA(args.test_data_file_path.format(args.base_data_dir), 'test',
app_feature_h5=args.app_feat_path,
motion_feature_h5=args.motion_feat_path)
test_dataloader = DataLoader(test_dataset, batch_size=128, shuffle=True, collate_fn=collate_func)
with open(args.answer_set_path.format(args.base_data_dir), 'r') as ansf:
answers = ansf.readlines()
args.output_dim = len(answers) # # output_dim == len(answers)
args.vision_dim = 2048
args.module_dim = 512
args.word_dim = 300
args.k_max_frame_level = 16
args.k_max_clip_level = 8
args.spl_resolution = 1
vocab_dct = json.load(open('{}/lemma-qa_vocab.json'.format(args.base_data_dir), 'r'))
args.question_type = 'none'
model_kwargs = {
'vision_dim': args.vision_dim, ## 2048
'module_dim': args.module_dim, ## 512
'word_dim': args.word_dim, ## 300
'k_max_frame_level': args.k_max_frame_level, ## 16
'k_max_clip_level': args.k_max_clip_level, ## 8
'spl_resolution': args.spl_resolution, ## 1
'vocab': vocab_dct, # # shape should be the same as glove_matrix
'question_type': args.question_type ## 'none'
}
# glove_matrix = torch.rand(201, 300).to(device)
with open(args.question_pt_path.format(args.base_data_dir), 'rb') as f:
obj = pickle.load(f)
glove_matrix = obj['glove']
glove_matrix = torch.FloatTensor(glove_matrix).to(device)
model = HCRN.HCRNNetwork(**model_kwargs).to(device)
with torch.no_grad():
model.linguistic_input_unit.encoder_embed.weight.set_(glove_matrix)
criterion = nn.CrossEntropyLoss().to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
reload_step = 0
if args.reload_model_path != '':
print('reloading model from', args.reload_model_path)
reload_step = reload(model=model, optimizer=optimizer, path=args.reload_model_path)
with open('{}/all_reasoning_types.txt'.format(args.base_data_dir), 'r') as reasonf:
all_reasoning_types = reasonf.readlines()
all_reasoning_types = [item.strip() for item in all_reasoning_types]
train_acc_calculator = ReasongingTypeAccCalculator(reasoning_types=all_reasoning_types)
test_acc_calculator = ReasongingTypeAccCalculator(reasoning_types=all_reasoning_types)
global_step = reload_step
TIMESTAMP = "{0:%Y-%m-%dT%H-%M-%S/}".format(datetime.now())
log_dir = os.path.join(args.basedir, 'events', TIMESTAMP)
os.makedirs(log_dir)
with open(os.path.join(log_dir, 'argument.txt'), 'w') as f:
for key, value in vars(args).items():
f.write('%s:%s\n'%(key, value))
print(key, value)
log_file = open(os.path.join(log_dir, 'log.txt'), 'w')
writer = SummaryWriter(log_dir=log_dir)
os.makedirs(os.path.join(args.basedir, 'ckpts'), exist_ok=True)
pbar = tqdm(total=args.nepoch * len(train_dataloader))
for epoch in range(args.nepoch):
model.train()
train_acc_calculator.reset()
for i, (answer_encode, app_feat, motion_feat, question_encode, question_len_lst, reasoning_type_lst) in enumerate(train_dataloader):
B = answer_encode.shape[0]
question_len = torch.from_numpy(np.array(question_len_lst))
answer_encode, app_feat, motion_feat, question_encode, question_len = answer_encode.to(device), app_feat.to(device), motion_feat.to(device), question_encode.to(device), question_len.to(device)
ans_candidates = torch.rand(B, 5).to(device)
ans_candidates_len = torch.rand(B, 5).to(device)
# app_feat = torch.rand(B, 8, 16, 2048).to(device)
# motion_feat = torch.rand(B, 8, 2048).to(device)
# question = torch.ones(B, 44).long().to(device)
# question_len = torch.ones(B).long().to(device)
if args.without_visual:
app_feat = torch.randn(B, 8, 16, 2048).to(device)
motion_feat = torch.randn(B, 8, 2048).to(device)
logits = model(ans_candidates, ans_candidates_len,
app_feat, motion_feat, question_encode, question_len)
loss = criterion(logits, answer_encode.long())
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), max_norm=12)
optimizer.step()
pred = torch.argmax(logits, dim=1)
train_acc = sum(pred == answer_encode) / B
train_acc_calculator.update(reasoning_type_lst, pred, answer_encode)
writer.add_scalar('train/loss', loss.item(), global_step)
writer.add_scalar('learning rates', optimizer.param_groups[0]['lr'], global_step)
writer.add_scalar('train/acc', train_acc, global_step)
pbar.update(1)
global_step += 1
if global_step % args.i_print == 0:
print(f"global_step:{global_step}, train_loss:{loss.item()}, train_acc:{train_acc}")
if (global_step) % args.i_val == 0:
test_acc_calculator.reset()
val_loss, val_acc = validate(model, val_dataloader, epoch, args, acc_calculator=test_acc_calculator)
writer.add_scalar('val/loss', val_loss.item(), global_step)
writer.add_scalar('val/acc', val_acc, global_step)
acc_dct = test_acc_calculator.get_acc()
for key, value in acc_dct.items():
writer.add_scalar(f'val/reasoning_{key}', value, global_step)
log_file.write(f'[VAL]: epoch: {epoch}, global_step: {global_step}\n')
log_file.write(f'true count dct: {test_acc_calculator.true_count_dct}\nall count dct: {test_acc_calculator.all_count_dct}\n\n')
if (global_step) % args.i_test == 0:
test_acc_calculator.reset()
test_loss, test_acc = validate( model, test_dataloader, epoch, args, acc_calculator=test_acc_calculator)
writer.add_scalar('test/loss', test_loss.item(), global_step)
writer.add_scalar('test/acc', test_acc, global_step)
acc_dct = test_acc_calculator.get_acc()
for key, value in acc_dct.items():
writer.add_scalar(f'test/reasoning_{key}', value, global_step)
log_file.write(f'[TEST]: epoch: {epoch}, global_step: {global_step}\n')
log_file.write(f'true count dct: {test_acc_calculator.true_count_dct}\nall count dct: {test_acc_calculator.all_count_dct}\n\n')
if (global_step) % args.i_weight == 0 and global_step >= 20000:
torch.save({
'hcrn_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss,
'global_step': global_step,
}, os.path.join(args.basedir, 'ckpts', f"model_{global_step}.tar"))
acc_dct = train_acc_calculator.get_acc()
for key, value in acc_dct.items():
writer.add_scalar(f'train/reasoning_{key}', value, global_step)
log_file.write(f'[TRAIN]: epoch: {epoch}, global_step: {global_step}\n')
log_file.write(f'true count dct: {train_acc_calculator.true_count_dct}\nall count dct: {train_acc_calculator.all_count_dct}\n\n')
log_file.flush()
def test(args):
device = args.device
test_dataset = LEMMA(args.test_data_file_path.format(args.base_data_dir), 'test',
app_feature_h5=args.app_feat_path,
motion_feature_h5=args.motion_feat_path)
test_dataloader = DataLoader(test_dataset, batch_size=128, shuffle=True, collate_fn=collate_func)
with open(args.answer_set_path.format(args.base_data_dir), 'r') as ansf:
answers = ansf.readlines()
args.output_dim = len(answers) # # output_dim == len(answers)
args.vision_dim = 2048
args.module_dim = 512
args.word_dim = 300
args.k_max_frame_level = 16
args.k_max_clip_level = 8
args.spl_resolution = 1
vocab_dct = json.load(open('{}/lemma-qa_vocab.json'.format(args.base_data_dir), 'r'))
args.question_type = 'none'
model_kwargs = {
'vision_dim': args.vision_dim, ## 2048
'module_dim': args.module_dim, ## 512
'word_dim': args.word_dim, ## 300
'k_max_frame_level': args.k_max_frame_level, ## 16
'k_max_clip_level': args.k_max_clip_level, ## 8
'spl_resolution': args.spl_resolution, ## 1
'vocab': vocab_dct, # # shape should be the same as glove_matrix
'question_type': args.question_type ## 'none'
}
# glove_matrix = torch.rand(201, 300).to(device)
with open(args.question_pt_path.format(args.base_data_dir), 'rb') as f:
obj = pickle.load(f)
glove_matrix = obj['glove']
glove_matrix = torch.FloatTensor(glove_matrix).to(device)
model = HCRN.HCRNNetwork(**model_kwargs).to(device)
with torch.no_grad():
model.linguistic_input_unit.encoder_embed.weight.set_(glove_matrix)
criterion = nn.CrossEntropyLoss().to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
reload_step = 0
if args.reload_model_path != '':
print('reloading model from', args.reload_model_path)
reload_step = reload(model=model, optimizer=optimizer, path=args.reload_model_path)
with open('{}/all_reasoning_types.txt'.format(args.base_data_dir), 'r') as reasonf:
all_reasoning_types = reasonf.readlines()
all_reasoning_types = [item.strip() for item in all_reasoning_types]
test_acc_calculator = ReasongingTypeAccCalculator(reasoning_types=all_reasoning_types)
test_acc_calculator.reset()
test_loss, test_acc = validate(model=model, val_loader=test_dataloader, epoch=0, args=args, acc_calculator=test_acc_calculator)
acc_dct = test_acc_calculator.get_acc()
for key, value in acc_dct.items():
print(f"{key} acc:{value}")
print('TOTAL TEST ACC:', test_acc.item())
def validate( model, val_loader, epoch, args, acc_calculator):
model.eval()
all_acc = 0
all_loss = 0
batch_size = args.batch_size
acc_calculator.reset()
starttime = time.time()
with torch.no_grad():
for i, (answer_encode, app_feat, motion_feat, question_encode, question_len_lst, reasoning_type_lst) in enumerate(tqdm(val_loader)):
B = answer_encode.shape[0]
question_len = torch.from_numpy(np.array(question_len_lst))
answer_encode, app_feat, motion_feat, question_encode, question_len = answer_encode.to(device), app_feat.to(device), motion_feat.to(device), question_encode.to(device), question_len.to(device)
ans_candidates = torch.rand(B, 5).to(device)
ans_candidates_len = torch.rand(B, 5).to(device)
if args.without_visual:
app_feat = torch.randn(B, 8, 16, 2048).to(device)
motion_feat = torch.randn(B, 8, 2048).to(device)
logits = model(ans_candidates, ans_candidates_len,
app_feat, motion_feat, question_encode, question_len)
all_loss += nn.CrossEntropyLoss().to(device)(logits, answer_encode.long())
pred = torch.argmax(logits, dim=1)
test_acc = sum(pred == answer_encode) / B
all_acc += test_acc
acc_calculator.update(reasoning_type_lst, pred, answer_encode)
print('validating cost', time.time() - starttime, 's')
all_loss /= len(val_loader)
all_acc /= len(val_loader)
model.train()
return all_loss, all_acc
def reload( model, optimizer, path):
checkpoint = torch.load(path)
model.load_state_dict(checkpoint['hcrn_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
global_step = checkpoint['global_step']
# model.eval()
return global_step
if __name__ =='__main__':
args = parse_args()
device_id = 0
device = torch.device(f"cuda:{device_id}" if torch.cuda.is_available() else "cpu")
args.device = device
# set random seed
torch.manual_seed(666)
np.random.seed(666)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(666)
if args.test_only:
print('test only!')
print('loading model from', args.reload_model_path)
test(args)
else:
print('start training...')
train(args)