-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation.py
130 lines (108 loc) · 5.42 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
import sys
import copy
import argparse
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
matplotlib.use('Agg')
import torch
import gym
import gym_gvgai
from ppo import algo, utils
from ppo.envs.atari import VecPyTorch, make_vec_envs
from ppo.utils import get_render_func, get_vec_normalize
from baselines.common.vec_env.vec_normalize import VecNormalize
from ppo.storage import RolloutStorage
from collections import deque
from tensorboardX import SummaryWriter
parser = argparse.ArgumentParser(description='PPO')
parser.add_argument('--num-evals', type=int, default=10)
parser.add_argument('--num-processes', type=int, default=4)
parser.add_argument('--load-dir', type=str, default='trained_models/')
parser.add_argument('--env-name', type=str, default='gvgai-aliens')
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--num-steps', type=int, default=2048)
parser.add_argument('--ppo-epochs', type=int, default=10)
parser.add_argument('--num-mini-batch', type=int, default=32)
parser.add_argument('--pi-lr', type=float, default=1e-4)
parser.add_argument('--v-lr', type=float, default=1e-3)
parser.add_argument('--dyn-lr', type=float, default=1e-3)
parser.add_argument('--hidden-size', type=int, default=128)
parser.add_argument('--clip-param', type=float, default=0.3)
parser.add_argument('--value-coef', type=float, default=0.5)
parser.add_argument('--entropy-coef', type=float, default=0.01)
parser.add_argument('--grad-norm-max', type=float, default=5.0)
parser.add_argument('--dyn-grad-norm-max', type=float, default=5)
parser.add_argument('--gamma', type=float, default=0.9)
parser.add_argument('--use-gae', action='store_true')
parser.add_argument('--gae-lambda', type=float, default=0.95)
parser.add_argument('--share-optim', action='store_true')
parser.add_argument('--predict-delta-obs', action='store_true')
parser.add_argument('--use-linear-lr-decay', action='store_true')
parser.add_argument('--use-clipped-value-loss', action='store_true')
parser.add_argument('--use-tensorboard', action='store_true')
parser.add_argument('--render', action='store_true', default=True)
if __name__ == '__main__':
print('WARNING: This code assumes that there are three models saved for the selected GVGAI_GYM game.\
This is due to the fact that the tests were carried out modifying the training and testing set for each game,\
generating three combinations:\
- 1 training game, 4 testing games;\
- 2 training games, 3 testing games;\
- 3 training games, 2 testing games.')
# parse arguments
args = parser.parse_args()
load_dir = args.load_dir + args.env_id
# set device and random seeds
device = torch.device("cpu")
torch.set_num_threads(1)
torch.manual_seed(args.seed)
for i in range(3):
# create agent
load_dir = args.load_dir + args.env_id
save = args.env_id + '-' + str(i+1) +'TL.pt'
actor_critic, ob_rms = \
torch.load(os.path.join(load_dir, args.env_id + '-' + str(i+1) +'TL.pt'))
actor_critic.to(device)
print('Model ', i+1)
for j in range(5):
print('Game level ', j+1)
# setup environment
name = args.env_id + '-lvl'+ str(j) + '-v0'
eval_envs = make_vec_envs(env_name = name,
seed = args.seed,
num_processes = args.num_processes,
gamma = args.gamma,
log_dir = '/tmp/gym/',
device = device,
allow_early_resets = True)
print('Evaluating...')
if eval_envs.venv.__class__.__name__ == "VecNormalize":
eval_envs.venv.ob_rms = envs.venv.ob_rms
def _obfilt(self, obs):
if self.ob_rms:
obs = np.clip((obs - self.ob_rms.mean) / np.sqrt(self.ob_rms.var + self.epsilon), -self.clipob, self.clipob)
return obs
else:
return obs
eval_envs.venv._obfilt = types.MethodType(_obfilt, envs.venv)
eval_episode_rewards = []
obs = eval_envs.reset()
eval_recurrent_hidden_states = torch.zeros(args.num_processes,
actor_critic.recurrent_hidden_state_size,
device=device)
eval_masks = torch.zeros(args.num_processes, 1, device=device)
while len(eval_episode_rewards) < 1:
with torch.no_grad():
_, action, _, eval_recurrent_hidden_states = actor_critic.act(
obs, eval_recurrent_hidden_states, eval_masks, deterministic=True)
if args.render:
eval_envs.render()
obs, reward, done, infos = eval_envs.step(action)
eval_masks = torch.FloatTensor([[0.0] if done_ else [1.0] for done_ in done])
for info in infos:
if 'episode' in info.keys():
eval_episode_rewards.append(info['episode']['r'])
eval_envs.close()
print(" Evaluation using {} episodes: mean reward {:.5f}\n".
format(len(eval_episode_rewards), np.mean(eval_episode_rewards)))