-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2.py
37 lines (29 loc) · 852 Bytes
/
2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import numpy as np
import matplotlib.pyplot as plt
from weight import weight
trainCSV = np.genfromtxt('quasar_train.csv',delimiter=",")
lambdas = trainCSV[0,:]
train = trainCSV[1:,:]
test = np.genfromtxt('quasar_test.csv',delimiter=",",skip_header=1)
mm = lambdas.size
y = train[0,:]
y.reshape(y.size,1)
x1 = np.ones((mm,1))
x2 = lambdas.reshape((mm,1))
X = np.hstack((x1,x2))
tau = 5
y_hat = np.zeros(mm)
for i in range(0, mm):
W = weight(x2, x2[i], tau)
XtWX = (X.T).dot(W).dot(X)
XtWX_inv = np.linalg.inv(XtWX)
theta_w = (XtWX_inv).dot(X.T).dot(W).dot(y)
y_hat[i] = X.dot(theta_w)[i]
plt.figure(1, figsize=(8, 4))
plt.ylabel('Intensity')
plt.xlabel("Wavelength")
plt.title("Smoothing some spectral data with WLS regression")
plt.scatter(x2, y, marker="x", c="red", s=2 )
plt.plot(x2, y_hat, "b-")
plt.legend()
plt.show()