欢迎来到 PaddlePaddle GitHub
飞桨(PaddlePaddle)以百度多年的深度学习技术研究和业务应用为基础,是中国首个自主研发、功能完备、 开源开放的产业级深度学习平台,集深度学习核心训练和推理框架、基础模型库、端到端开发套件和丰富的工具组件于一体。目前,飞桨累计开发者1070万,服务企业23.5万家,基于飞桨开源深度学习平台产生了86万个模型。飞桨助力开发者快速实现AI想法,快速上线AI业务。帮助越来越多的行业完成AI赋能,实现产业智能化升级。
PaddlePaddle 最新版本: v2.6
跟进 PaddlePaddle 最新特性请参考我们的版本说明
# CPU
pip install paddlepaddle
# GPU
pip install paddlepaddle-gpu
更多安装信息详见官网 安装说明
PaddlePaddle用户可领取免费Tesla V100在线算力资源,训练模型更高效。每日登陆即送8小时,前往使用免费算力。
-
开发便捷的产业级深度学习框架
飞桨深度学习框架采用基于编程逻辑的组网范式,对于普通开发者而言更容易上手,符合他们的开发习惯。同时支持声明式和命令式编程,兼具开发的灵活性和高性能。网络结构自动设计,模型效果超越人类专家。
-
支持超大规模深度学习模型的训练
飞桨突破了超大规模深度学习模型训练技术,实现了支持千亿特征、万亿参数、数百节点的开源大规模训练平台,攻克了超大规模深度学习模型的在线学习难题,实现了万亿规模参数模型的实时更新。 查看详情
-
支持多端多平台的高性能推理部署工具
飞桨不仅广泛兼容第三方开源框架训练的模型部署,并且为不同的场景的生产环境提供了完备的推理引擎,包括适用于高性能服务器及云端推理的原生推理库 Paddle Inference,面向分布式、流水线生产环境下自动上云、A/B测试等高阶功能的服务化推理框架 Paddle Serving,针对于移动端、物联网场景的轻量化推理引擎 Paddle Lite,以及在浏览器、小程序等环境下使用的前端推理引擎 Paddle.js。同时,透过与不同场景下的主流硬件高度适配优化及异构计算的支持, 飞桨的推理性能也领先绝大部分的主流实现。
-
面向产业应用,开源开放覆盖多领域的工业级模型库。
飞桨官方支持100多个经过产业实践长期打磨的主流模型,其中包括在国际竞赛中夺得冠军的模型;同时开源开放200多个预训练模型,助力快速的产业应用。 查看详情
-
Github Issues:提交安装/使用问题、报告bug、建议新特性、沟通开发计划等
-
社区活动:
- 入门:快乐开源活动(热身打卡 + 常规赛、启航计划)
- 进阶:飞桨黑客马拉松(开源贡献个人挑战赛、大模型应用与创意赛、飞桨护航计划集训营)
-
社区组织:
- 技术交流组织:飞桨核心框架贡献者俱乐部 PFCC
- 社区治理组织:飞桨社区开源发展工作组 PPOSDWG
-
社区博客:https://pfcc.blog/
PaddlePaddle由Apache-2.0 license提供