-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict_emotion.py
536 lines (397 loc) · 18.5 KB
/
predict_emotion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
import torch
from torch.utils.data import Dataset, DataLoader
import pandas as pd
from transformers import Wav2Vec2Model, Wav2Vec2Processor, Wav2Vec2PreTrainedModel, Wav2Vec2Config
import torch.nn as nn
from torch.optim import AdamW
from torch.optim.lr_scheduler import OneCycleLR
from tqdm import tqdm
from sklearn.model_selection import train_test_split
from torchinfo import summary
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Agg')
from torchmetrics.regression import ConcordanceCorrCoef
import numpy as np
import random
import librosa
from pathlib import Path
import gc
# Class for implementing audio augmentations
class AudioAugmentation:
def __init__(self, sample_rate=16000, noise_level=0.01, time_mask_param=30, freq_mask_param=15):
self.sample_rate = sample_rate
self.noise_level = noise_level
self.time_mask_param = time_mask_param
self.freq_mask_param = freq_mask_param
def add_background_noise(self, waveform):
noise = torch.randn_like(torch.from_numpy(waveform)) * self.noise_level
return torch.add(torch.from_numpy(waveform), noise)
def pitch_shift(self, waveform):
return librosa.effects.pitch_shift(y=waveform, sr=self.sample_rate, n_steps=random.randint(-6, 6))
# sovrapposizione tra due file di input
def superimpose(self, waveform, random_waveform):
return torch.add(torch.from_numpy(waveform), torch.from_numpy(random_waveform*0.5))
def augment(self, waveform, random_waveform):
augmentations = [
lambda x,_: self.add_background_noise(x),
lambda x,_: self.pitch_shift(x),
lambda x,y: self.superimpose(x,y)
]
random.shuffle(augmentations)
for augment in augmentations[:1]:
waveform = augment(waveform, random_waveform)
return waveform
# Constructing dataset
class EmotionDataset(Dataset):
def __init__(self, df, processor, augmenter, attention_mask):
self.df = df
self.processor = processor
self.augmenter = augmenter
self.sample_rate = 16000
self.max_seconds = 6 #max padding seconds
self.threshold = 0.8 #max percentage of which files to keep
self.attention_mask = attention_mask
def __len__(self):
return len(self.df)
# Normalize waveform between 0 and 1
def normalize_waveform(self, wav_data):
if isinstance(wav_data, torch.Tensor):
wav_data = wav_data.float()
elif isinstance(wav_data, np.ndarray):
wav_data = wav_data.astype(np.float32)
wav_data = torch.from_numpy(wav_data)
max_val = wav_data.abs().max()
if max_val > 0:
wav_data = wav_data / max_val
return wav_data.numpy() if isinstance(wav_data, torch.Tensor) else wav_data
# Method for retrieving mel coefficients
@staticmethod
def get_mel_spectrogram(input_values):
n_mels = 48
hop_length = int(0.010 * 16000)
win_length = int(0.025 * 16000)
n_fft = 512
mel_spectrogram = librosa.feature.melspectrogram(y=input_values.numpy(), sr=16000, n_mels=n_mels, \
hop_length=hop_length, win_length=win_length, fmax=8000,\
n_fft=n_fft)
mel_spectrogram = librosa.power_to_db(mel_spectrogram, ref=np.max)
mel_spectrogram_derivative_1 = librosa.feature.delta(mel_spectrogram, order=1)
mel_spectrogram_derivative_2 = librosa.feature.delta(mel_spectrogram, order=2)
mel_spectrogram = librosa.util.normalize(mel_spectrogram)
mel_spectrogram_derivative_1 = librosa.util.normalize(mel_spectrogram_derivative_1)
mel_spectrogram_derivative_2 = librosa.util.normalize(mel_spectrogram_derivative_2)
mel_spectrogram_stack = np.stack([mel_spectrogram, mel_spectrogram_derivative_1, mel_spectrogram_derivative_2], axis=0)
return torch.tensor(mel_spectrogram_stack, dtype=torch.float32)
def retrieve_random_waveform(self, wav_data):
random_wav = self.df.iloc[random.randint(0, len(self.df)-1)]["wav_file"]
return (torch.randn_like(torch.from_numpy(wav_data)) * 0.01).numpy() if len(random_wav) < len(wav_data) \
else random_wav[:len(wav_data)]
# Padding of max_seconds and creation of the batch
def __getitem__(self, idx):
wav_data = self.df.iloc[idx]["wav_file"]
valence = self.df.iloc[idx]["Valence"]
arousal = self.df.iloc[idx]["Arousal"]
max_length = self.sample_rate * self.max_seconds
if len(wav_data) > max_length/ self.threshold:
return self.__getitem__((idx + 1) % len(self.df))
rand_augmenter = int(random.random()*1000)
random_wav = self.retrieve_random_waveform(wav_data)
# Apply file augmentation randomly and occasionaly
if self.augmenter and (rand_augmenter%4==0):
wav_data = self.augmenter.augment(wav_data, random_wav)
inputs = self.processor(wav_data, sampling_rate=self.sample_rate, return_tensors="pt", padding = 'max_length', \
truncation = True, max_length = max_length, do_normalize = True,\
return_attention_mask = self.attention_mask)
input_values = inputs['input_values'].squeeze(0)
inputs['input_values'] = input_values
inputs['mel_spectrogram'] = EmotionDataset.get_mel_spectrogram(input_values)
inputs['labels'] = torch.tensor([valence, arousal], dtype=torch.float32)
return inputs
class EmotionModel(Wav2Vec2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.wav2vec2 = Wav2Vec2Model(self.config)
# Freezing the CNN extractors
for param in self.wav2vec2.feature_extractor.parameters():
param.requires_grad = False
for param in self.wav2vec2.feature_projection.parameters():
param.requires_grad = False
# Fine-tuning of transformer layers
for param in self.wav2vec2.encoder.parameters():
param.requires_grad = True
# Mel CNN
self.mel_cnn = nn.Sequential(
nn.Conv2d(3, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
nn.BatchNorm2d(4),
nn.ReLU(),
nn.MaxPool2d(kernel_size=(2, 2)),
nn.Conv2d(4, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
nn.BatchNorm2d(8),
nn.ReLU(),
nn.MaxPool2d(kernel_size=(2, 2)),
nn.Conv2d(8, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.MaxPool2d(kernel_size=(2, 2)),
nn.Flatten()
)
# BLSTM
#config.hidden_size = 768
self.rnn = nn.LSTM(input_size= 4368, hidden_size=config.hidden_size, num_layers=2, \
batch_first=True, bidirectional=True, dropout=0.5)
self.act = nn.Tanh()
self.dropout = nn.Dropout(0.5)
# Final Regressor
self.regressor = nn.Linear(self.rnn.hidden_size*2, config.num_labels)
self.init_weights()
def forward(
self,
input_values,
mel_spectrogram
):
outputs = self.wav2vec2(input_values)
hidden_states = outputs.last_hidden_state
hidden_states = torch.mean(hidden_states, dim=1)
mel_features = self.mel_cnn(mel_spectrogram)
# Combine features
combined_features = torch.cat((hidden_states, mel_features), dim=1)
#combined_features = self.dropout(combined_features)
temp,_ = self.rnn(combined_features)
temp = self.dropout(temp)
temp = self.act(temp)
logits = self.regressor(temp)
return hidden_states, logits
# Saving best epoch model
def save_checkpoint(model, optimizer, epoch, filename):
checkpoint = {
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'epoch': epoch
}
torch.save(checkpoint, filename)
print(f"Checkpoint saved at epoch {epoch + 1}")
# Dynamically set device (CUDA GPU or CPU)
def return_device():
return torch.device("cuda" if torch.cuda.is_available() else "cpu")
# CCC loss
def ccc_loss(gold, pred):
ccc = ConcordanceCorrCoef().to("cuda")
coeff = ccc(gold, pred)
# print("CCC:", coeff)
ccc_loss = 1 - coeff
return ccc_loss
def L1(gold, pred):
#return torch.mean(torch.abs(gold-pred))
loss = nn.L1Loss()
return loss(pred, gold)
def L2(gold, pred):
#return torch.mean((gold-pred)**2)
loss = nn.MSELoss()
return loss(pred, gold)
def R2(gold, pred):
num = torch.sum((gold-pred)**2)
den = torch.sum((gold - torch.mean(gold))**2)
return 1 - (num / den)
def batch_values(batch, device):
input_values = batch['input_values'].to(device)
mel_spectrogram = batch['mel_spectrogram'].to(device)
labels = batch['labels'].to(device)
return input_values, labels, mel_spectrogram
def compute_loss(model, device, batch, alpha, beta):
input_values, labels, mel_spectrogram = batch_values(batch, device)
# For small batch sizes where variance could be very low
if labels[:, 0].std() < 1e-7 or labels[:, 1].std() < 1e-7:
print("Value equal to 0 or invariance in labels!")
return None
_,logits = model(input_values, mel_spectrogram)
loss_val = ccc_loss(labels[:, 0], logits[:, 0])
loss_ar = ccc_loss(labels[:, 1], logits[:, 1])
# Weighted total loss
loss = alpha * loss_val + beta * loss_ar
print(f"Loss (valence): {loss_val.item()}, Loss (arousal): {loss_ar.item()}, Total: {loss.item()}")
return loss, loss_val, loss_ar, labels, logits
# Training function
def train(model, device, train_dataloader, test_dataloader, \
epochs=3, alpha=0.5, beta=0.5, checkpoint_path = "custom_model.pth", patience_es = 15):
print("****TRAINING****")
train_losses = []
val_losses = []
valence_losses = []
arousal_losses = []
l1_losses_val = []
l2_losses_val = []
r2_losses_val = []
l1_losses_ar = []
l2_losses_ar = []
r2_losses_ar = []
best_val_loss = float("inf")
no_improvement_epochs = 0
optimizer = AdamW(model.parameters(), lr=1e-5, weight_decay=1e-3)
scheduler = OneCycleLR(optimizer, max_lr=1e-4, steps_per_epoch=len(train_dataloader), epochs=10)
for epoch in range(epochs):
model.train()
epoch_loss = 0
# Training Loop
for batch in tqdm(train_dataloader):
optimizer.zero_grad()
loss, _, _, _, _, = compute_loss(model, device, batch, alpha, beta)
if loss is None: continue
# Backpropagation
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
optimizer.step()
loss = loss.item()
epoch_loss += loss
avg_epoch_loss = epoch_loss / len(train_dataloader)
train_losses.append(avg_epoch_loss)
print(f"Epoch {epoch + 1}/{epochs}, Training Loss: {avg_epoch_loss}")
# Validation Loop
val_loss, loss_val, loss_ar, l1_val, l2_val, r2_val, l1_ar, l2_ar, r2_ar = validate(model, device, test_dataloader, alpha, beta)
val_losses.append(val_loss)
valence_losses.append(loss_val)
arousal_losses.append(loss_ar)
l1_losses_val.append(l1_val)
l2_losses_val.append(l2_val)
r2_losses_val.append(r2_val)
l1_losses_ar.append(l1_ar)
l2_losses_ar.append(l2_ar)
r2_losses_ar.append(r2_ar)
# Check if validation loss improved
if val_loss < best_val_loss:
best_val_loss = val_loss
no_improvement_epochs = 0
save_checkpoint(model, optimizer, epoch, checkpoint_path)
print(f"\tNew best model saved with Validation Loss: {val_loss:.4f}")
else:
no_improvement_epochs += 1
print(f"\tNo improvement for {no_improvement_epochs} epochs...")
# Early Stopping Check
if no_improvement_epochs >= patience_es:
print("-----------EARLY STOPPING TRIGGERED.-----------")
break
plot_losses(train_losses, val_losses)
plot_metrics(valence_losses, arousal_losses, l1_losses_val, l2_losses_val, r2_losses_val, \
l1_losses_ar, l2_losses_ar, r2_losses_ar)
scheduler.step(val_loss)
# Validation Loop
def validate(model, device, test_dataloader, alpha, beta):
model.eval()
val_loss = 0
val_loss_val = 0
val_loss_ar = 0
labels = None
logits = None
print("****VALIDATION****")
with torch.no_grad():
for batch in tqdm(test_dataloader):
loss, loss_val, loss_ar, lab, log = compute_loss(model, device, batch, alpha, beta)
if lab is not None:
if labels is None:
labels = lab.to(return_device())
logits = log.to(return_device())
else:
labels = torch.cat((labels, lab))
logits = torch.cat((logits, log))
if loss is None: continue
val_loss += loss.item()
val_loss_val += loss_val.item()
val_loss_ar += loss_ar.item()
# Average CCC scores
avg_val_loss = val_loss / len(test_dataloader)
avg_val_loss_val = val_loss_val / len(test_dataloader)
avg_val_loss_ar = val_loss_ar / len(test_dataloader)
l1_val = L1(labels[:,0], logits[:,0]).item()
l2_val = L2(labels[:,0], logits[:,0]).item()
r2_val = R2(labels[:,0], logits[:,0]).item()
l1_ar = L1(labels[:,1], logits[:,1]).item()
l2_ar = L2(labels[:,1], logits[:,1]).item()
r2_ar = R2(labels[:,1], logits[:,1]).item()
print(f"Validation Loss: {avg_val_loss}")
return avg_val_loss, avg_val_loss_val, avg_val_loss_ar, l1_val, l2_val, r2_val, l1_ar, l2_ar, r2_ar
def plot_losses(train_losses, val_losses, filename = "plots/loss_plot_trial.png"):
plt.figure(figsize=(10, 6))
plt.plot(range(1, len(train_losses) + 1), train_losses, label='Training Loss', marker='o')
plt.plot(range(1, len(val_losses) + 1), val_losses, label='Validation Loss', marker='o')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training and Validation Loss Over Epochs')
plt.legend()
plt.grid(True)
plt.savefig(filename)
print(f"Plot saved as {filename}")
def plot_metrics(valence_losses, arousal_losses, l1_val, l2_val, r2_val, l1_ar, l2_ar, r2_ar, filename = "plots/metrics_plot_trial.png"):
plt.figure(figsize=(10, 6))
plt.plot(range(1, len(valence_losses) + 1), valence_losses, label='Valence CCC Loss', marker='o')
plt.plot(range(1, len(arousal_losses) + 1), arousal_losses, label='Arousal CCC Loss', marker='o')
plt.plot(range(1, len(l1_val) + 1), l1_val, label='L1 Val Loss', marker='o')
plt.plot(range(1, len(l2_val) + 1), l2_val, label='L2 Val Loss', marker='o')
plt.plot(range(1, len(r2_val) + 1), r2_val, label='R2 Val Loss', marker='o')
plt.plot(range(1, len(l1_ar) + 1), l1_ar, label='L1 Ar Loss', marker='o')
plt.plot(range(1, len(l2_ar) + 1), l2_ar, label='L2 Ar Loss', marker='o')
plt.plot(range(1, len(r2_ar) + 1), r2_ar, label='R2 Ar Loss', marker='o')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Metrics Over Epochs')
plt.legend()
plt.grid(True)
plt.savefig(filename)
print(f"Plot saved as {filename}")
# Load Checkpoint
def load_trained_model(device, checkpoint_path, pretrained_model):
config = Wav2Vec2Config.from_pretrained(pretrained_model)
model = EmotionModel(config).to(device)
processor = Wav2Vec2Processor.from_pretrained(pretrained_model)
print(checkpoint_path)
if Path(checkpoint_path).exists():
checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=True)
model.load_state_dict(checkpoint['model_state_dict'])
print("Loaded trained model from checkpoint.")
else:
print("Checkpoint not found. Using untrained model.")
return model, processor
# Prediction
def predict_emotion(model, device, processor, wav_data):
model.eval()
inputs = processor(wav_data, sampling_rate=16000, return_tensors="pt", padding = 'max_length', \
truncation = True, max_length = 6*16000, do_normalize = True,\
return_attention_mask = False)
input_values = inputs['input_values'].to(device)
mel_spectrogram = EmotionDataset.get_mel_spectrogram(input_values).to(device)
mel_spectrogram = mel_spectrogram.permute(1,0,2,3)
with torch.no_grad():
_, outputs = model(input_values=input_values, mel_spectrogram=mel_spectrogram)
return outputs
def main():
device = return_device()
pretrained_model = "facebook/wav2vec2-base"
processor = Wav2Vec2Processor.from_pretrained(pretrained_model, attn_implementation="flash_attention_2")
config = Wav2Vec2Config.from_pretrained(pretrained_model)
muse = pd.read_pickle("data/MuSe_sample").sample(frac=1, random_state=42)
iemocap = pd.read_pickle("data/IEMOCAP_useful").sample(frac=1, random_state=42)
msp = pd.read_pickle("data/MSP_PODCAST_SAMPLED").sample(frac=1, random_state=42)
df = pd.concat([iemocap, muse, msp]).sample(frac=1, random_state=42)
print(df["Valence"].describe())
print(df["Arousal"].describe())
df.drop(columns = ["Name"], inplace = True)
print(df)
train_df, test_df = train_test_split(df, test_size=0.2, random_state=42)
augmenter = AudioAugmentation(sample_rate=16000)
att_mask = False
if config.feat_extract_norm == "layer":
print("\tReturn Attention Mask")
att_mask = True
train_dataset = EmotionDataset(train_df, processor, augmenter, att_mask)
test_dataset = EmotionDataset(test_df, processor, augmenter, att_mask)
train_dataloader = DataLoader(train_dataset, batch_size=32, shuffle=True,\
num_workers=4, pin_memory=True, drop_last = True, )
test_dataloader = DataLoader(test_dataset, batch_size=32, shuffle=True,\
num_workers=4, pin_memory=True, drop_last = True,)
del df, train_df, test_df, train_dataset, test_dataset, muse, iemocap, msp
gc.collect()
model = EmotionModel(config).to(device)
summary(model)
train(model, device, train_dataloader, test_dataloader, epochs = 50)
if __name__ == "__main__":
main()