-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcikm_sst_predrnn_run.py
282 lines (230 loc) · 9.43 KB
/
cikm_sst_predrnn_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import shutil
import argparse
import numpy as np
import torch
from core.models.model_factory import Model
from core.utils import preprocess
import core.trainer as trainer
from data_provider.CIKM.data_iterator import *
import math
# -----------------------------------------------------------------------------
parser = argparse.ArgumentParser(description='PyTorch video prediction model - SST PredRNN')
# training/test
parser.add_argument('--is_training', type=int, default=1)
# parser.add_argument('--device', type=str, default='gpu:0')
# data
parser.add_argument('--is_parallel', type=bool, default=False)
parser.add_argument('--dataset_name', type=str, default='radar')
parser.add_argument('--save_dir', type=str, default='checkpoints/cikm_sst_predrnn')
parser.add_argument('--gen_frm_dir', type=str, default='/mnt/A/meteorological/2500_ref_seq/CIKM_sst_predrnn/')
parser.add_argument('--input_length', type=int, default=5)
parser.add_argument('--total_length', type=int, default=15)
parser.add_argument('--img_width', type=int, default=128)
parser.add_argument('--img_channel', type=int, default=1)
# model
parser.add_argument('--model_name', type=str, default='sst_predrnn')
parser.add_argument('--pretrained_model', type=str, default='')
parser.add_argument('--num_hidden', type=str, default='64,64,64,64')
parser.add_argument('--filter_size', type=int, default=5)
parser.add_argument('--stride', type=int, default=1)
parser.add_argument('--patch_size', type=int, default=4)
parser.add_argument('--layer_norm', type=int, default=1)
# scheduled sampling
parser.add_argument('--scheduled_sampling', type=int, default=1)
parser.add_argument('--sampling_stop_iter', type=int, default=50000)
parser.add_argument('--sampling_start_value', type=float, default=1.0)
parser.add_argument('--sampling_changing_rate', type=float, default=0.00002)
# optimization
parser.add_argument('--lr', type=float, default=0.0004)
parser.add_argument('--reverse_input', type=int, default=1)
parser.add_argument('--batch_size', type=int, default=4)
parser.add_argument('--max_iterations', type=int, default=80000)
parser.add_argument('--display_interval', type=int, default=200)
parser.add_argument('--test_interval', type=int, default=2000)
parser.add_argument('--snapshot_interval', type=int, default=5000)
parser.add_argument('--num_save_samples', type=int, default=10)
parser.add_argument('--n_gpu', type=int, default=1)
args = parser.parse_args()
batch_size = args.batch_size
def padding_CIKM_data(frame_data):
shape = frame_data.shape
batch_size = shape[0]
seq_length = shape[1]
padding_frame_dat = np.zeros((batch_size,seq_length,args.img_width,args.img_width,args.img_channel))
padding_frame_dat[:,:,13:-14,13:-14,:] = frame_data
return padding_frame_dat
def unpadding_CIKM_data(padding_frame_dat):
return padding_frame_dat[:,:,13:-14,13:-14,:]
def schedule_sampling(eta, itr):
zeros = np.zeros((args.batch_size,
args.total_length - args.input_length - 1,
args.img_width // args.patch_size,
args.img_width // args.patch_size,
args.patch_size ** 2 * args.img_channel))
if not args.scheduled_sampling:
return 0.0, zeros
if itr < args.sampling_stop_iter:
eta -= args.sampling_changing_rate
else:
eta = 0.0
random_flip = np.random.random_sample(
(args.batch_size, args.total_length - args.input_length - 1))
true_token = (random_flip < eta)
ones = np.ones((args.img_width // args.patch_size,
args.img_width // args.patch_size,
args.patch_size ** 2 * args.img_channel))
zeros = np.zeros((args.img_width // args.patch_size,
args.img_width // args.patch_size,
args.patch_size ** 2 * args.img_channel))
real_input_flag = []
for i in range(args.batch_size):
for j in range(args.total_length - args.input_length - 1):
if true_token[i, j]:
real_input_flag.append(ones)
else:
real_input_flag.append(zeros)
real_input_flag = np.array(real_input_flag)
real_input_flag = np.reshape(real_input_flag,
(args.batch_size,
args.total_length - args.input_length - 1,
args.img_width // args.patch_size,
args.img_width // args.patch_size,
args.patch_size ** 2 * args.img_channel))
return eta, real_input_flag
def wrapper_test(model):
test_save_root = args.gen_frm_dir
clean_fold(test_save_root)
loss = 0
count = 0
index = 1
flag = True
img_mse, ssim = [], []
for i in range(args.total_length - args.input_length):
img_mse.append(0)
ssim.append(0)
real_input_flag = np.zeros(
(args.batch_size,
args.total_length - args.input_length - 1,
args.img_width // args.patch_size,
args.img_width // args.patch_size,
args.patch_size ** 2 * args.img_channel))
output_length = args.total_length - args.input_length
while flag:
dat, (index, b_cup) = sample(batch_size, data_type='test', index=index)
dat = nor(dat)
tars = dat[:, -output_length:]
ims = padding_CIKM_data(dat)
ims = preprocess.reshape_patch(ims, args.patch_size)
img_gen,_ = model.test(ims, real_input_flag)
img_gen = preprocess.reshape_patch_back(img_gen, args.patch_size)
img_out = unpadding_CIKM_data(img_gen[:, -output_length:])
mse = np.mean(np.square(tars - img_out))
img_out = de_nor(img_out)
loss = loss + mse
count = count + 1
bat_ind = 0
for ind in range(index - batch_size, index, 1):
save_fold = test_save_root + 'sample_' + str(ind) + '/'
clean_fold(save_fold)
for t in range(6, 16, 1):
imsave(save_fold + 'img_' + str(t) + '.png', img_out[bat_ind, t - 6, :, :, 0])
bat_ind = bat_ind + 1
if b_cup == args.batch_size - 1:
pass
else:
flag = False
return loss / count
def wrapper_valid(model):
loss = 0
count = 0
index = 1
flag = True
img_mse, ssim = [], []
for i in range(args.total_length - args.input_length):
img_mse.append(0)
ssim.append(0)
real_input_flag = np.zeros(
(args.batch_size,
args.total_length - args.input_length - 1,
args.img_width // args.patch_size,
args.img_width // args.patch_size,
args.patch_size ** 2 * args.img_channel))
output_length = args.total_length - args.input_length
while flag:
dat, (index, b_cup) = sample(batch_size, data_type='validation', index=index)
dat = nor(dat)
tars = dat[:, -output_length:]
ims = padding_CIKM_data(dat)
ims = preprocess.reshape_patch(ims, args.patch_size)
img_gen,_ = model.test(ims, real_input_flag)
img_gen = preprocess.reshape_patch_back(img_gen, args.patch_size)
img_out = unpadding_CIKM_data(img_gen[:, -output_length:])
mse = np.mean(np.square(tars-img_out))
loss = loss+mse
count = count+1
if b_cup == args.batch_size-1:
pass
else:
flag = False
return loss/count
def wrapper_train(model):
if args.pretrained_model:
model.load(args.pretrained_model)
# load data
# train_input_handle, test_input_handle = datasets_factory.data_provider(
# args.dataset_name, args.train_data_paths, args.valid_data_paths, args.batch_size, args.img_width,
# seq_length=args.total_length, is_training=True)
eta = args.sampling_start_value
best_mse = math.inf
tolerate = 0
limit = 3
best_iter = None
for itr in range(1, args.max_iterations + 1):
ims = sample(
batch_size=batch_size
)
ims = padding_CIKM_data(ims)
ims = preprocess.reshape_patch(ims, args.patch_size)
ims = nor(ims)
eta, real_input_flag = schedule_sampling(eta, itr)
cost = trainer.train(model, ims, real_input_flag, args, itr)
if itr % args.display_interval == 0:
print('itr: ' + str(itr))
print('training loss: ' + str(cost))
if itr % args.test_interval == 0:
print('validation one ')
valid_mse = wrapper_valid(model)
print('validation mse is:',str(valid_mse))
if valid_mse<best_mse:
best_mse = valid_mse
best_iter = itr
tolerate = 0
model.save()
else:
tolerate = tolerate+1
if tolerate==limit:
model.load()
test_mse = wrapper_test(model)
print('the best valid mse is:',str(best_mse))
print('the test mse is ',str(test_mse))
break
# if os.path.exists(args.save_dir):
# shutil.rmtree(args.save_dir)
# os.makedirs(args.save_dir)
#
# if os.path.exists(args.gen_frm_dir):
# shutil.rmtree(args.gen_frm_dir)
# os.makedirs(args.gen_frm_dir)
gpu_list = np.asarray(os.environ.get('CUDA_VISIBLE_DEVICES', '-1').split(','), dtype=np.int32)
args.n_gpu = len(gpu_list)
print('Initializing models')
model = Model(args)
model.load()
test_mse = wrapper_test(model)
# print('test mse is:',str(test_mse))
# if args.is_training:
# wrapper_train(model)
# else:
# wrapper_test(model)