-
Notifications
You must be signed in to change notification settings - Fork 37
/
eval_mme.py
472 lines (405 loc) · 16.4 KB
/
eval_mme.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
from typing import Tuple
import os
import sys
import torch
import fire
import time
import json
from fairscale.nn.model_parallel.initialize import initialize_model_parallel
from lavin.eval_model import ModelArgs, Transformer
from lavin.tokenizer import Tokenizer
from lavin.generator import LaVIN_Generator
from lavin.mm_adapter import set_MMAdapter,set_Clip_Adapter
from util.base_prompt import build_prompt
from dataclasses import dataclass
import re
import random
import warnings
import pandas as pd
from PIL import Image
from torchvision.transforms import transforms
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from pathlib import Path
import fairscale.nn.model_parallel.initialize as fs_init
import torch.distributed as dist
from util.apply_delta import apply_model_delta_online
warnings.filterwarnings('ignore')
@dataclass
class PromptArgs:
prompt_format='QCM-ALE'
use_caption=True
options=["A", "B", "C", "D", "E"]
def setup_model_parallel() -> Tuple[int, int]:
local_rank = int(os.environ.get("LOCAL_RANK", -1))
world_size = int(os.environ.get("WORLD_SIZE", -1))
torch.distributed.init_process_group("nccl")
initialize_model_parallel(world_size)
torch.cuda.set_device(local_rank)
# seed must be the same in all processes
torch.manual_seed(1)
return local_rank, world_size
def _load_and_redistribute_checkpoint(llama_model_path, model_name):
with open(Path(llama_model_path) / model_name / 'params.json') as f:
params = json.load(f)
tokenizer = Tokenizer(model_path=str(Path(llama_model_path) / 'tokenizer.model'))
print('Using model path: %s, model_name: %s' % (llama_model_path, model_name))
if model_name=='7B':
checkpoint = torch.load(llama_model_path + model_name + '/consolidated.00.pth', map_location="cpu")
return checkpoint, tokenizer, params
checkpoints = (Path(llama_model_path) / model_name).glob('*.pth')
checkpoints = sorted(checkpoints)
mp_world_size = fs_init.get_model_parallel_world_size()
mp_rank = fs_init.get_model_parallel_rank()
if mp_world_size == len(checkpoints):
print('same number of shards of checkpoints and training, loading directly...')
dist.barrier()
print('[rank=%d, mp_rank=%d] loading from %s' % (dist.get_rank(), mp_rank, checkpoints[mp_rank]))
checkpoint = torch.load(checkpoints[mp_rank], map_location='cpu')
else:
print('different number of shards of checkpoints and training, redistributing...')
if dist.get_rank() == 0:
loaded = []
for x in checkpoints:
print('loading from', x)
loaded.append(torch.load(x, map_location='cpu'))
full_state_dict = {}
split_dims = {}
def add_weight_with_split_dim(name, dim):
if dim < 0: # bcast without split
full_state_dict[name] = loaded[0][name].clone()
else:
full_state_dict[name] = torch.cat([x[name] for x in loaded], dim=dim)
for x in loaded:
del x[name]
split_dims[name] = dim
add_weight_with_split_dim('tok_embeddings.weight', 1)
add_weight_with_split_dim('norm.weight', -1)
add_weight_with_split_dim('output.weight', 0)
for i in range(params['n_layers']):
print('gathering layer %d of %d' % (i, params['n_layers']))
layer_prefix = f'layers.{i}.'
bcast_names = [
'attention_norm.weight',
'ffn_norm.weight',
]
column_parallel_names = [
'attention.wq.weight',
'attention.wk.weight',
'attention.wv.weight',
'feed_forward.w1.weight',
'feed_forward.w3.weight',
]
row_parallel_names = [
'attention.wo.weight',
'feed_forward.w2.weight',
]
for key in bcast_names:
add_weight_with_split_dim(layer_prefix + key, -1)
for key in column_parallel_names:
add_weight_with_split_dim(layer_prefix + key, 0)
for key in row_parallel_names:
add_weight_with_split_dim(layer_prefix + key, 1)
full_state_dict_meta = dict((k, v.shape) for k, v in full_state_dict.items())
dist.broadcast_object_list([full_state_dict_meta, split_dims], src=0)
else: # dist.get_rank() != 0
recv_objs = [None, None]
dist.broadcast_object_list(recv_objs, src=0)
full_state_dict_meta, split_dims = recv_objs
local_state_dict = {}
for k in sorted(full_state_dict_meta.keys()):
print('redistributing weights: %s' % k)
if dist.get_rank() == 0:
value = full_state_dict[k].cuda().half()
del full_state_dict[k]
else:
value = torch.empty(full_state_dict_meta[k], device='cuda', dtype=torch.half)
dist.broadcast(value, src=0)
value = value.cpu()
if split_dims[k] < 0:
local_state_dict[k] = value
else:
dim = split_dims[k]
assert dim >= 0 and dim < value.ndim and value.size(dim) % mp_world_size == 0
shard_size = value.size(dim) // mp_world_size
shard_st, shard_ed = shard_size * mp_rank, shard_size * (mp_rank + 1)
# TODO: make more general
if dim == 0:
value = value[shard_st: shard_ed]
elif dim == 1:
value = value[:, shard_st: shard_ed]
else:
raise NotImplementedError()
local_state_dict[k] = value.clone()
checkpoint = local_state_dict
return checkpoint, tokenizer, params
def get_acc_with_contion(res_pd, key, values):
if isinstance(values, list):
total_pd = res_pd[res_pd[key].isin(values)]
else:
total_pd = res_pd[res_pd[key] == values]
correct_pd = total_pd[total_pd['true_false'] == True]
acc = "{:.2f}".format(len(correct_pd) / len(total_pd) * 100)
return acc
def get_scores(result_file, data_file):
# read result file
results = json.load(open(result_file))
num = len(results)
assert num == 4241
sqa_data = json.load(open(data_file))
# construct pandas data
sqa_pd = pd.DataFrame(sqa_data).T
res_pd = sqa_pd[sqa_pd['split'] == 'test'] # test set
# update data
for index, row in res_pd.iterrows():
res_pd.loc[index, 'no_context'] = True if (not row['hint'] and not row['image']) else False
res_pd.loc[index, 'has_text'] = True if row['hint'] else False
res_pd.loc[index, 'has_image'] = True if row['image'] else False
res_pd.loc[index, 'has_text_image'] = True if (row['hint'] and row['image']) else False
label = row['answer']
pred = int(results[index])
res_pd.loc[index, 'pred'] = pred
res_pd.loc[index, 'true_false'] = (label == pred)
# accuracy scores
acc_average = len(res_pd[res_pd['true_false'] == True]) / num * 100
scores = {
'acc_natural':
get_acc_with_contion(res_pd, 'subject', 'natural science'),
'acc_social':
get_acc_with_contion(res_pd, 'subject', 'social science'),
'acc_language':
get_acc_with_contion(res_pd, 'subject', 'language science'),
'acc_has_text':
get_acc_with_contion(res_pd, 'has_text', True),
'acc_has_image':
get_acc_with_contion(res_pd, 'has_image', True),
'acc_no_context':
get_acc_with_contion(res_pd, 'no_context', True),
'acc_grade_1_6':
get_acc_with_contion(res_pd, 'grade', ['grade1', 'grade2', 'grade3', 'grade4', 'grade5', 'grade6']),
'acc_grade_7_12':
get_acc_with_contion(res_pd, 'grade', ['grade7', 'grade8', 'grade9', 'grade10', 'grade11', 'grade12']),
'acc_average':
"{:.2f}".format(acc_average),
}
return scores
def print_scores(scores):
latex_output = ""
for key, score in scores.items():
print(f"{key[4:]}: \t{score}")
latex_output += f"& {score} "
latex_output += "\\\\"
print(latex_output)
def load(
ckpt_dir: str,
llm_model:str,
tokenizer_path: str,
adapter_path: str,
local_rank: int,
world_size: int,
max_seq_len: int,
max_batch_size: int,
adapter_type: str,
adapter_dim:int,
adapter_scale:float,
hidden_proj:int,
visual_adapter_type: str,
temperature: float,
use_vicuna: bool
) -> LaVIN_Generator:
start_time = time.time()
checkpoint, tokenizer, params = _load_and_redistribute_checkpoint(ckpt_dir, llm_model)
print("Loading")
adapter_checkpoint = torch.load(adapter_path, map_location="cpu")
model_args: ModelArgs = ModelArgs(
max_seq_len=max_seq_len, max_batch_size=max_batch_size,hidden_proj=hidden_proj, **params
)
model_args.vocab_size = tokenizer.n_words
torch.set_default_tensor_type(torch.cuda.HalfTensor)
model = Transformer(model_args)
set_MMAdapter(model, adapter_type, dim=adapter_dim, s=adapter_scale,t=temperature)
set_Clip_Adapter(model.backbone.visual, visual_adapter_type, dim=adapter_dim, s=adapter_scale,t=temperature)
torch.set_default_tensor_type(torch.FloatTensor)
model.load_state_dict(checkpoint, strict=False)
if use_vicuna:
apply_model_delta_online(model,'../data/weights/vicuna_'+llm_model)
state_dict={}
for key in adapter_checkpoint['model']:
state_dict[key.replace('module.','')]=adapter_checkpoint['model'][key]
model.load_state_dict(state_dict, strict=False)
generator = LaVIN_Generator(model, tokenizer)
print(f"Loaded in {time.time() - start_time:.2f} seconds")
return generator
def get_pred_idx(prediction, choices, options):
"""
Get the index (e.g. 2) from the prediction (e.g. 'C')
"""
if prediction in options[:len(choices)]:
return options.index(prediction)
else:
return random.choice(range(len(choices)))
def prepare_data(dir):
if os.path.exists(os.path.join(dir,'images')):
image_dir=os.path.join(dir,'images')
else:
image_dir=dir
if os.path.exists(os.path.join(dir,'questions_answers_YN')):
ann_dir=os.path.join(dir,'questions_answers_YN')
else:
ann_dir=dir
image_list=[]
image_path=[]
for root, dirs, files in os.walk(image_dir):
for file in files:
# 检查文件后缀名是否为.jpg或.png
if file.endswith(".jpg") or file.endswith(".png"):
# 拼接文件的完整路径
image_list.append(file)
image_path.append(os.path.join(image_dir,file))
ann_list=[]
for img_id in image_list:
ann_file=img_id.replace('.jpg','.txt').replace('.png','.txt')
ann={}
with open(os.path.join(ann_dir,ann_file)) as f:
pos=f.readline().split('\t')[0]
neg=f.readline().split('\t')[0]
ann['pos']=pos
ann['neg']=neg
ann_list.append(ann)
return image_path,ann_list
def main(
ckpt_dir: str,
tokenizer_path: str,
adapter_path: str,
data_root:str,
caption_file:str,
max_seq_len: int,
max_batch_size: int,
llm_model:str='7B',
generation_temperature: float = 0.1,
top_p: float = 0.75,
split='val',
prompt_format='QCM-ALE',
use_caption=False,
options=["A", "B", "C", "D", "E"],
adapter_type='repattn',
adapter_dim=8,
adapter_scale=1,
n_prompt=10,
hidden_proj=128,
visual_adapter_type='normal',
temperature=10.,
use_vicuna=False,
root_dir_='../data/mme'
):
print(max_batch_size,max_seq_len)
print('use caption: ',use_caption)
local_rank, world_size = setup_model_parallel()
if local_rank > 0:
sys.stdout = open(os.devnull, "w")
generator = load(
ckpt_dir,llm_model, tokenizer_path, adapter_path, local_rank, world_size, max_seq_len, max_batch_size,
adapter_type,adapter_dim,adapter_scale,hidden_proj,visual_adapter_type,
temperature,use_vicuna)
subsets=os.listdir(root_dir_)
total_score=0
cognition_score=0
perception_score=0
for subset in subsets:
root_dir=os.path.join(root_dir_,subset)
print('split: ', subset)
img_list,ann_list=prepare_data(root_dir)
qids=range(len(img_list))
total_items=len(img_list)
print('total_items: ',total_items)
image_transforms=transforms.Compose([transforms.Resize((224, 224), interpolation=Image.BICUBIC),transforms.ToTensor(), transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)])
prompt_args=PromptArgs()
prompt_args.prompt_format = prompt_format
prompt_args.use_caption = use_caption
prompt_args.options = options
pattern = re.compile(r'The answer is ([A-Z]).')
answers = []
preds=[]
max_batch_size=8
for i in range(total_items//max_batch_size+1):
batch_qids=qids[i*max_batch_size:(i+1)*max_batch_size]
if len(batch_qids)==0:
break
indicators = []
prompts=[]
images = []
for qid in batch_qids:
#pos
prompt= 'Instruction: '+ ann_list[qid]['pos']+'\n'+\
'Response: '
prompt = prompt.replace(" ", " ").strip()
answer='yes'
image = Image.open(img_list[qid]).convert('RGB')
image = image_transforms(image)
indicator = 1
prompts.append(prompt)
answers.append(answer)
images.append(image.unsqueeze(0))
indicators.append(indicator)
#neg
prompt= 'Instruction: '+ ann_list[qid]['neg']+'\n'+\
'Response: '
prompt = prompt.replace(" ", " ").strip()
answer='no'
indicator = 1
prompts.append(prompt)
answers.append(answer)
images.append(image.unsqueeze(0))
indicators.append(indicator)
images=torch.cat(images,0)
results = generator.generate(
prompts,images=images,indicators=indicators, max_gen_len=20, temperature=generation_temperature, top_p=top_p,n_feats=n_prompt
)
for result in results:
result=result.lower().strip().split('response:')[1]
if 'yes' in result[:4]:
pred='yes'
elif 'no' in result[:4]:
pred='no'
else:
pred='other'
preds.append(pred)
#evaluations
correct=0
corrects=[]
assert len(preds)==len(answers)
for i, prediction in enumerate(preds):
if prediction == answers[i]:
correct += 1
corrects.append(1)
else:
corrects.append(0)
import numpy as np
corrects=np.array(corrects)
acc = correct / len(preds) * 100
acc_plus= (corrects.reshape(-1,2).sum(1)==2).sum()/ (len(preds)//2)* 100
total_score+=acc
total_score+=acc_plus
if subset in ['commonsense_reasoning','numerical_calculation','text_translation','code_reasoning']:
cognition_score+=acc_plus
cognition_score+=acc
else:
perception_score+=acc_plus
perception_score+=acc
print('subset: ', subset)
print('overall accuracy: ', acc)
print('overall accuracy+: ', acc_plus)
with open('mme_eval.txt','a') as f:
f.write('subset: '+ subset+'\n')
f.write('accuracy: '+ str(acc)+'\n')
f.write('accuracy+: '+ str(acc_plus)+'\n')
print('total_score: ',total_score)
print('perception_score: ',perception_score)
print('cognition_score: ',cognition_score)
with open('mme_eval.txt', 'a') as f:
f.write('total_score: ' + str(total_score) + '\n')
f.write('perception_score: ' + str(perception_score) + '\n')
f.write('cognition_score: ' + str(cognition_score) + '\n')
if __name__ == "__main__":
fire.Fire(main)