-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpredict.py
152 lines (129 loc) · 5.64 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import torch
import pickle
import os.path
import torchvision
import torch.nn.functional as F
import torchvision.models as models
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import numpy as np
import argparse
import subprocess
import collections
from collections import OrderedDict
args = collections.namedtuple
import sys
srcFolder = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'src')
sys.path.append(srcFolder)
from metrics import (nss, auc, cc)
from utils import *
from losses import *
from models import *
from training_scheme import *
parser = argparse.ArgumentParser(description='Saliency Training')
parser.add_argument('--lr', default=0.0005, type=float,
help='learning rate')
parser.add_argument('--lr_decay_epoch', default=2, type=float,
help='every n epochs to decay learning rate')
parser.add_argument('--lr_coef', default=.1, type=float,
help='lr coefficient to change learning rates')
parser.add_argument('--weight_decay', default=0.0, type=float,
help='weight decay')
parser.add_argument('--epoch', default=10, type=int,
help='number of epochs')
parser.add_argument('--batchsize', default=8, type=int,
help='batch size for training')
parser.add_argument('--val_batchsize', default=1, type=int,
help='batch size for validation')
parser.add_argument('--model', default='resnet50', type=str,
help='backbone network: resnet50, din50')
parser.add_argument('--type_dispatcher', default=0, type=int,
help='0: use baseline, 1: l2 norm, 2: angle')
parser.add_argument('--memsize', default=5, type=int,
help='memory size')
parser.add_argument('--mem_window', default=0, type=int,
help='reset window')
parser.add_argument('--mem_offset', default=0, type=int,
help='memory offset')
parser.add_argument('--mem_strength', default=0.0, type=float,
help='memory strength')
parser.add_argument('--mtype', default='dcl', type=str,
help='method type: baseline, dcl, gem')
parser.add_argument('--train_img_dir', default='',
type=str,
help='training images path')
parser.add_argument('--train_gt_dir', default='',
type=str,
help='training human fixation maps path')
parser.add_argument('--val_img_dir', default='',
type=str,
help='validation images path')
parser.add_argument('--val_gt_dir', default='',
type=str,
help='validation human fixation maps path')
parser.add_argument('--image_size', nargs='+', type=int,
help='image resolution for training: (600, 800) | (480, 640) | (320, 640)')
parser.add_argument('--out_dir', default='',
type=str,
help='validation human fixation maps path')
parser.add_argument('--optype', default='adam',
type=str,
help='optimizer')
parser.add_argument('--random_seed', default=0, type=int,
help='random seed')
parser.add_argument('--pretrainedModel', default='',
type=str,
help='pretrained saliency model path')
parser.add_argument('--gaussblur_sigma', default=-1.0, type=float,
help='Gaussian blur sigma')
parser.add_argument('--gaussblur_truncate', default=4.0, type=float,
help='Gaussian blur truncate')
parser.add_argument('--file_type', default='jpg', type=str,
help='output file type')
args = parser.parse_args()
args.start_epoch = 0
args.pretrained = True
args.useMultiGPU = True
args.pretrainedModel = ''
args.experiment_name = '{}'.format(args.model)
out_folder = args.out_dir
ensure_dir(out_folder)
if args.image_size is None:
args.image_size = (480,640)
else:
args.image_size = (args.image_size[0], args.image_size[1])
n_output = 256
modelzoo = {
'densenet169': models.densenet169,
'vgg16': models.vgg16,
'resnet101': models.resnet101,
'resnet50': models.resnet50,
'resnet34': models.resnet34,
'resnet18': models.resnet18,
}
print(vars(args))
# create the model and optimizer
if args.model == 'din50':
model = Saliency_DIN(args.model,modelzoo,args.pretrained,n_output=n_output)
elif args.model == 'resnet50':
model = Saliency_ResNet50(args.model,modelzoo,args.pretrained)
if args.pretrainedModel != '':
model.load_state_dict(torch.load(args.pretrainedModel))
if not args.useMultiGPU:
model = model.cuda()
param_groups = model.get_param_groups()
elif args.useMultiGPU:
model = nn.DataParallel(model).cuda()
val_loader = create_test_data_loader(args.val_img_dir,
args.val_batch_size,
args.image_size)
#print total number of parameters
number_of_params = sum(p.numel() for p in model.parameters())
print('===Total parameters number: {}'.format(number_of_params))
txtlogger = open('{}/predict_stat.txt'.format(out_folder), 'w')
print(vars(args),file=txtlogger, flush=True)
val_batchtime, val_datatime = predict(model, val_loader, os.path.join(out_folder, 'salmaps'),
inargs.gaussblur_sigma, inargs.gaussblur_truncate, inargs.file_type)
print('avg batch time {}, avg data time {}, avg proc time {}'.format(val_batchtime, val_datatime, val_batchtime-val_datatime),file=txtlogger, flush=True)
print('avg batch time {}, avg data time {}, avg proc time {}'.format(val_batchtime, val_datatime, val_batchtime-val_datatime))
txtlogger.close()