forked from rust-lang/rust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadt.rs
845 lines (783 loc) · 33.7 KB
/
adt.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! # Representation of Algebraic Data Types
//!
//! This module determines how to represent enums, structs, and tuples
//! based on their monomorphized types; it is responsible both for
//! choosing a representation and translating basic operations on
//! values of those types. (Note: exporting the representations for
//! debuggers is handled in debuginfo.rs, not here.)
//!
//! Note that the interface treats everything as a general case of an
//! enum, so structs/tuples/etc. have one pseudo-variant with
//! discriminant 0; i.e., as if they were a univariant enum.
//!
//! Having everything in one place will enable improvements to data
//! structure representation; possibilities include:
//!
//! - User-specified alignment (e.g., cacheline-aligning parts of
//! concurrently accessed data structures); LLVM can't represent this
//! directly, so we'd have to insert padding fields in any structure
//! that might contain one and adjust GEP indices accordingly. See
//! issue #4578.
//!
//! - Store nested enums' discriminants in the same word. Rather, if
//! some variants start with enums, and those enums representations
//! have unused alignment padding between discriminant and body, the
//! outer enum's discriminant can be stored there and those variants
//! can start at offset 0. Kind of fancy, and might need work to
//! make copies of the inner enum type cooperate, but it could help
//! with `Option` or `Result` wrapped around another enum.
//!
//! - Tagged pointers would be neat, but given that any type can be
//! used unboxed and any field can have pointers (including mutable)
//! taken to it, implementing them for Rust seems difficult.
use super::Disr;
use std;
use llvm::{ValueRef, True, IntEQ, IntNE};
use rustc::ty::layout;
use rustc::ty::{self, Ty, AdtKind};
use build::*;
use common::*;
use debuginfo::DebugLoc;
use glue;
use base;
use machine;
use monomorphize;
use type_::Type;
use type_of;
use value::Value;
#[derive(Copy, Clone, PartialEq)]
pub enum BranchKind {
Switch,
Single
}
#[derive(Copy, Clone)]
pub struct MaybeSizedValue {
pub value: ValueRef,
pub meta: ValueRef,
}
impl MaybeSizedValue {
pub fn sized(value: ValueRef) -> MaybeSizedValue {
MaybeSizedValue {
value: value,
meta: std::ptr::null_mut()
}
}
pub fn unsized_(value: ValueRef, meta: ValueRef) -> MaybeSizedValue {
MaybeSizedValue {
value: value,
meta: meta
}
}
pub fn has_meta(&self) -> bool {
!self.meta.is_null()
}
}
/// Given an enum, struct, closure, or tuple, extracts fields.
/// Treats closures as a struct with one variant.
/// `empty_if_no_variants` is a switch to deal with empty enums.
/// If true, `variant_index` is disregarded and an empty Vec returned in this case.
fn compute_fields<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, t: Ty<'tcx>,
variant_index: usize,
empty_if_no_variants: bool) -> Vec<Ty<'tcx>> {
match t.sty {
ty::TyAdt(ref def, _) if def.variants.len() == 0 && empty_if_no_variants => {
Vec::default()
},
ty::TyAdt(ref def, ref substs) => {
def.variants[variant_index].fields.iter().map(|f| {
monomorphize::field_ty(cx.tcx(), substs, f)
}).collect::<Vec<_>>()
},
ty::TyTuple(fields) => fields.to_vec(),
ty::TyClosure(_, substs) => {
if variant_index > 0 { bug!("{} is a closure, which only has one variant", t);}
substs.upvar_tys.to_vec()
},
_ => bug!("{} is not a type that can have fields.", t)
}
}
/// LLVM-level types are a little complicated.
///
/// C-like enums need to be actual ints, not wrapped in a struct,
/// because that changes the ABI on some platforms (see issue #10308).
///
/// For nominal types, in some cases, we need to use LLVM named structs
/// and fill in the actual contents in a second pass to prevent
/// unbounded recursion; see also the comments in `trans::type_of`.
pub fn type_of<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, t: Ty<'tcx>) -> Type {
generic_type_of(cx, t, None, false, false)
}
// Pass dst=true if the type you are passing is a DST. Yes, we could figure
// this out, but if you call this on an unsized type without realising it, you
// are going to get the wrong type (it will not include the unsized parts of it).
pub fn sizing_type_of<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
t: Ty<'tcx>, dst: bool) -> Type {
generic_type_of(cx, t, None, true, dst)
}
pub fn incomplete_type_of<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
t: Ty<'tcx>, name: &str) -> Type {
generic_type_of(cx, t, Some(name), false, false)
}
pub fn finish_type_of<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
t: Ty<'tcx>, llty: &mut Type) {
let l = cx.layout_of(t);
debug!("finish_type_of: {} with layout {:#?}", t, l);
match *l {
layout::CEnum { .. } | layout::General { .. }
| layout::UntaggedUnion { .. } | layout::RawNullablePointer { .. } => { }
layout::Univariant { ..}
| layout::StructWrappedNullablePointer { .. } => {
let (nonnull_variant, packed) = match *l {
layout::Univariant { ref variant, .. } => (0, variant.packed),
layout::StructWrappedNullablePointer { nndiscr, ref nonnull, .. } =>
(nndiscr, nonnull.packed),
_ => unreachable!()
};
let fields = compute_fields(cx, t, nonnull_variant as usize, true);
llty.set_struct_body(&struct_llfields(cx, &fields, false, false),
packed)
},
_ => bug!("This function cannot handle {} with layout {:#?}", t, l)
}
}
fn generic_type_of<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
t: Ty<'tcx>,
name: Option<&str>,
sizing: bool,
dst: bool) -> Type {
let l = cx.layout_of(t);
debug!("adt::generic_type_of t: {:?} name: {:?} sizing: {} dst: {}",
t, name, sizing, dst);
match *l {
layout::CEnum { discr, .. } => Type::from_integer(cx, discr),
layout::RawNullablePointer { nndiscr, .. } => {
let (def, substs) = match t.sty {
ty::TyAdt(d, s) => (d, s),
_ => bug!("{} is not an ADT", t)
};
let nnty = monomorphize::field_ty(cx.tcx(), substs,
&def.variants[nndiscr as usize].fields[0]);
type_of::sizing_type_of(cx, nnty)
}
layout::StructWrappedNullablePointer { nndiscr, ref nonnull, .. } => {
let fields = compute_fields(cx, t, nndiscr as usize, false);
match name {
None => {
Type::struct_(cx, &struct_llfields(cx, &fields, sizing, dst),
nonnull.packed)
}
Some(name) => {
assert_eq!(sizing, false);
Type::named_struct(cx, name)
}
}
}
layout::Univariant { ref variant, .. } => {
// Note that this case also handles empty enums.
// Thus the true as the final parameter here.
let fields = compute_fields(cx, t, 0, true);
match name {
None => {
let fields = struct_llfields(cx, &fields, sizing, dst);
Type::struct_(cx, &fields, variant.packed)
}
Some(name) => {
// Hypothesis: named_struct's can never need a
// drop flag. (... needs validation.)
assert_eq!(sizing, false);
Type::named_struct(cx, name)
}
}
}
layout::Vector { element, count } => {
let elem_ty = Type::from_primitive(cx, element);
Type::vector(&elem_ty, count)
}
layout::UntaggedUnion { ref variants, .. }=> {
// Use alignment-sized ints to fill all the union storage.
let size = variants.stride().bytes();
let align = variants.align.abi();
let fill = union_fill(cx, size, align);
match name {
None => {
Type::struct_(cx, &[fill], variants.packed)
}
Some(name) => {
let mut llty = Type::named_struct(cx, name);
llty.set_struct_body(&[fill], variants.packed);
llty
}
}
}
layout::General { discr, size, align, .. } => {
// We need a representation that has:
// * The alignment of the most-aligned field
// * The size of the largest variant (rounded up to that alignment)
// * No alignment padding anywhere any variant has actual data
// (currently matters only for enums small enough to be immediate)
// * The discriminant in an obvious place.
//
// So we start with the discriminant, pad it up to the alignment with
// more of its own type, then use alignment-sized ints to get the rest
// of the size.
let size = size.bytes();
let align = align.abi();
let discr_ty = Type::from_integer(cx, discr);
let discr_size = discr.size().bytes();
let padded_discr_size = roundup(discr_size, align as u32);
let variant_part_size = size-padded_discr_size;
let variant_fill = union_fill(cx, variant_part_size, align);
assert_eq!(machine::llalign_of_min(cx, variant_fill), align as u32);
assert_eq!(padded_discr_size % discr_size, 0); // Ensure discr_ty can fill pad evenly
let fields: Vec<Type> =
[discr_ty,
Type::array(&discr_ty, (padded_discr_size - discr_size)/discr_size),
variant_fill].iter().cloned().collect();
match name {
None => {
Type::struct_(cx, &fields[..], false)
}
Some(name) => {
let mut llty = Type::named_struct(cx, name);
llty.set_struct_body(&fields[..], false);
llty
}
}
}
_ => bug!("Unsupported type {} represented as {:#?}", t, l)
}
}
fn union_fill(cx: &CrateContext, size: u64, align: u64) -> Type {
assert_eq!(size%align, 0);
assert_eq!(align.count_ones(), 1, "Alignment must be a power fof 2. Got {}", align);
let align_units = size/align;
let dl = &cx.tcx().data_layout;
let layout_align = layout::Align::from_bytes(align, align).unwrap();
if let Some(ity) = layout::Integer::for_abi_align(dl, layout_align) {
Type::array(&Type::from_integer(cx, ity), align_units)
} else {
Type::array(&Type::vector(&Type::i32(cx), align/4),
align_units)
}
}
fn struct_llfields<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, fields: &Vec<Ty<'tcx>>,
sizing: bool, dst: bool) -> Vec<Type> {
if sizing {
fields.iter().filter(|&ty| !dst || type_is_sized(cx.tcx(), *ty))
.map(|&ty| type_of::sizing_type_of(cx, ty)).collect()
} else {
fields.iter().map(|&ty| type_of::in_memory_type_of(cx, ty)).collect()
}
}
/// Obtain a representation of the discriminant sufficient to translate
/// destructuring; this may or may not involve the actual discriminant.
pub fn trans_switch<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
t: Ty<'tcx>,
scrutinee: ValueRef,
range_assert: bool)
-> (BranchKind, Option<ValueRef>) {
let l = bcx.ccx().layout_of(t);
match *l {
layout::CEnum { .. } | layout::General { .. } |
layout::RawNullablePointer { .. } | layout::StructWrappedNullablePointer { .. } => {
(BranchKind::Switch, Some(trans_get_discr(bcx, t, scrutinee, None, range_assert)))
}
layout::Univariant { .. } | layout::UntaggedUnion { .. } => {
// N.B.: Univariant means <= 1 enum variants (*not* == 1 variants).
(BranchKind::Single, None)
},
_ => bug!("{} is not an enum.", t)
}
}
pub fn is_discr_signed<'tcx>(l: &layout::Layout) -> bool {
match *l {
layout::CEnum { signed, .. }=> signed,
_ => false,
}
}
/// Obtain the actual discriminant of a value.
pub fn trans_get_discr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, t: Ty<'tcx>,
scrutinee: ValueRef, cast_to: Option<Type>,
range_assert: bool)
-> ValueRef {
let (def, substs) = match t.sty {
ty::TyAdt(ref def, substs) if def.adt_kind() == AdtKind::Enum => (def, substs),
_ => bug!("{} is not an enum", t)
};
debug!("trans_get_discr t: {:?}", t);
let l = bcx.ccx().layout_of(t);
let val = match *l {
layout::CEnum { discr, min, max, .. } => {
load_discr(bcx, discr, scrutinee, min, max, range_assert)
}
layout::General { discr, .. } => {
let ptr = StructGEP(bcx, scrutinee, 0);
load_discr(bcx, discr, ptr, 0, def.variants.len() as u64 - 1,
range_assert)
}
layout::Univariant { .. } | layout::UntaggedUnion { .. } => C_u8(bcx.ccx(), 0),
layout::RawNullablePointer { nndiscr, .. } => {
let cmp = if nndiscr == 0 { IntEQ } else { IntNE };
let llptrty = type_of::sizing_type_of(bcx.ccx(),
monomorphize::field_ty(bcx.ccx().tcx(), substs,
&def.variants[nndiscr as usize].fields[0]));
ICmp(bcx, cmp, Load(bcx, scrutinee), C_null(llptrty), DebugLoc::None)
}
layout::StructWrappedNullablePointer { nndiscr, ref discrfield, .. } => {
struct_wrapped_nullable_bitdiscr(bcx, nndiscr, discrfield, scrutinee)
},
_ => bug!("{} is not an enum", t)
};
match cast_to {
None => val,
Some(llty) => if is_discr_signed(&l) { SExt(bcx, val, llty) } else { ZExt(bcx, val, llty) }
}
}
fn struct_wrapped_nullable_bitdiscr(bcx: Block, nndiscr: u64, discrfield: &layout::FieldPath,
scrutinee: ValueRef) -> ValueRef {
let llptrptr = GEPi(bcx, scrutinee,
&discrfield.iter().map(|f| *f as usize).collect::<Vec<_>>()[..]);
let llptr = Load(bcx, llptrptr);
let cmp = if nndiscr == 0 { IntEQ } else { IntNE };
ICmp(bcx, cmp, llptr, C_null(val_ty(llptr)), DebugLoc::None)
}
/// Helper for cases where the discriminant is simply loaded.
fn load_discr(bcx: Block, ity: layout::Integer, ptr: ValueRef, min: u64, max: u64,
range_assert: bool)
-> ValueRef {
let llty = Type::from_integer(bcx.ccx(), ity);
assert_eq!(val_ty(ptr), llty.ptr_to());
let bits = ity.size().bits();
assert!(bits <= 64);
let bits = bits as usize;
let mask = !0u64 >> (64 - bits);
// For a (max) discr of -1, max will be `-1 as usize`, which overflows.
// However, that is fine here (it would still represent the full range),
if max.wrapping_add(1) & mask == min & mask || !range_assert {
// i.e., if the range is everything. The lo==hi case would be
// rejected by the LLVM verifier (it would mean either an
// empty set, which is impossible, or the entire range of the
// type, which is pointless).
Load(bcx, ptr)
} else {
// llvm::ConstantRange can deal with ranges that wrap around,
// so an overflow on (max + 1) is fine.
LoadRangeAssert(bcx, ptr, min, max.wrapping_add(1), /* signed: */ True)
}
}
/// Yield information about how to dispatch a case of the
/// discriminant-like value returned by `trans_switch`.
///
/// This should ideally be less tightly tied to `_match`.
pub fn trans_case<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, t: Ty<'tcx>, value: Disr)
-> ValueRef {
let l = bcx.ccx().layout_of(t);
match *l {
layout::CEnum { discr, .. }
| layout::General { discr, .. }=> {
C_integral(Type::from_integer(bcx.ccx(), discr), value.0, true)
}
layout::RawNullablePointer { .. } |
layout::StructWrappedNullablePointer { .. } => {
assert!(value == Disr(0) || value == Disr(1));
C_bool(bcx.ccx(), value != Disr(0))
}
_ => {
bug!("{} does not have a discriminant. Represented as {:#?}", t, l);
}
}
}
/// Set the discriminant for a new value of the given case of the given
/// representation.
pub fn trans_set_discr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, t: Ty<'tcx>,
val: ValueRef, to: Disr) {
let l = bcx.ccx().layout_of(t);
match *l {
layout::CEnum{ discr, min, max, .. } => {
assert_discr_in_range(Disr(min), Disr(max), to);
Store(bcx, C_integral(Type::from_integer(bcx.ccx(), discr), to.0, true),
val);
}
layout::General{ discr, .. } => {
Store(bcx, C_integral(Type::from_integer(bcx.ccx(), discr), to.0, true),
StructGEP(bcx, val, 0));
}
layout::Univariant { .. }
| layout::UntaggedUnion { .. }
| layout::Vector { .. } => {
assert_eq!(to, Disr(0));
}
layout::RawNullablePointer { nndiscr, .. } => {
let nnty = compute_fields(bcx.ccx(), t, nndiscr as usize, false)[0];
if to.0 != nndiscr {
let llptrty = type_of::sizing_type_of(bcx.ccx(), nnty);
Store(bcx, C_null(llptrty), val);
}
}
layout::StructWrappedNullablePointer { nndiscr, ref discrfield, ref nonnull, .. } => {
if to.0 != nndiscr {
if target_sets_discr_via_memset(bcx) {
// Issue #34427: As workaround for LLVM bug on
// ARM, use memset of 0 on whole struct rather
// than storing null to single target field.
let b = B(bcx);
let llptr = b.pointercast(val, Type::i8(b.ccx).ptr_to());
let fill_byte = C_u8(b.ccx, 0);
let size = C_uint(b.ccx, nonnull.stride().bytes());
let align = C_i32(b.ccx, nonnull.align.abi() as i32);
base::call_memset(&b, llptr, fill_byte, size, align, false);
} else {
let path = discrfield.iter().map(|&i| i as usize).collect::<Vec<_>>();
let llptrptr = GEPi(bcx, val, &path[..]);
let llptrty = val_ty(llptrptr).element_type();
Store(bcx, C_null(llptrty), llptrptr);
}
}
}
_ => bug!("Cannot handle {} represented as {:#?}", t, l)
}
}
fn target_sets_discr_via_memset<'blk, 'tcx>(bcx: Block<'blk, 'tcx>) -> bool {
bcx.sess().target.target.arch == "arm" || bcx.sess().target.target.arch == "aarch64"
}
fn assert_discr_in_range(min: Disr, max: Disr, discr: Disr) {
if min <= max {
assert!(min <= discr && discr <= max)
} else {
assert!(min <= discr || discr <= max)
}
}
/// Access a field, at a point when the value's case is known.
pub fn trans_field_ptr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, t: Ty<'tcx>,
val: MaybeSizedValue, discr: Disr, ix: usize) -> ValueRef {
trans_field_ptr_builder(&bcx.build(), t, val, discr, ix)
}
/// Access a field, at a point when the value's case is known.
pub fn trans_field_ptr_builder<'blk, 'tcx>(bcx: &BlockAndBuilder<'blk, 'tcx>,
t: Ty<'tcx>,
val: MaybeSizedValue,
discr: Disr, ix: usize)
-> ValueRef {
let l = bcx.ccx().layout_of(t);
debug!("trans_field_ptr_builder on {} represented as {:#?}", t, l);
// Note: if this ever needs to generate conditionals (e.g., if we
// decide to do some kind of cdr-coding-like non-unique repr
// someday), it will need to return a possibly-new bcx as well.
match *l {
layout::Univariant { ref variant, .. } => {
assert_eq!(discr, Disr(0));
struct_field_ptr(bcx, &variant,
&compute_fields(bcx.ccx(), t, 0, false),
val, ix, false)
}
layout::Vector { count, .. } => {
assert_eq!(discr.0, 0);
assert!((ix as u64) < count);
bcx.struct_gep(val.value, ix)
}
layout::General { discr: d, ref variants, .. } => {
let mut fields = compute_fields(bcx.ccx(), t, discr.0 as usize, false);
fields.insert(0, d.to_ty(&bcx.ccx().tcx(), false));
struct_field_ptr(bcx, &variants[discr.0 as usize],
&fields,
val, ix + 1, true)
}
layout::UntaggedUnion { .. } => {
let fields = compute_fields(bcx.ccx(), t, 0, false);
let ty = type_of::in_memory_type_of(bcx.ccx(), fields[ix]);
if bcx.is_unreachable() { return C_undef(ty.ptr_to()); }
bcx.pointercast(val.value, ty.ptr_to())
}
layout::RawNullablePointer { nndiscr, .. } |
layout::StructWrappedNullablePointer { nndiscr, .. } if discr.0 != nndiscr => {
let nullfields = compute_fields(bcx.ccx(), t, (1-nndiscr) as usize, false);
// The unit-like case might have a nonzero number of unit-like fields.
// (e.d., Result of Either with (), as one side.)
let ty = type_of::type_of(bcx.ccx(), nullfields[ix]);
assert_eq!(machine::llsize_of_alloc(bcx.ccx(), ty), 0);
// The contents of memory at this pointer can't matter, but use
// the value that's "reasonable" in case of pointer comparison.
if bcx.is_unreachable() { return C_undef(ty.ptr_to()); }
bcx.pointercast(val.value, ty.ptr_to())
}
layout::RawNullablePointer { nndiscr, .. } => {
let nnty = compute_fields(bcx.ccx(), t, nndiscr as usize, false)[0];
assert_eq!(ix, 0);
assert_eq!(discr.0, nndiscr);
let ty = type_of::type_of(bcx.ccx(), nnty);
if bcx.is_unreachable() { return C_undef(ty.ptr_to()); }
bcx.pointercast(val.value, ty.ptr_to())
}
layout::StructWrappedNullablePointer { ref nonnull, nndiscr, .. } => {
assert_eq!(discr.0, nndiscr);
struct_field_ptr(bcx, &nonnull,
&compute_fields(bcx.ccx(), t, discr.0 as usize, false),
val, ix, false)
}
_ => bug!("element access in type without elements: {} represented as {:#?}", t, l)
}
}
fn struct_field_ptr<'blk, 'tcx>(bcx: &BlockAndBuilder<'blk, 'tcx>,
st: &layout::Struct, fields: &Vec<Ty<'tcx>>, val: MaybeSizedValue,
ix: usize, needs_cast: bool) -> ValueRef {
let ccx = bcx.ccx();
let fty = fields[ix];
let ll_fty = type_of::in_memory_type_of(bcx.ccx(), fty);
if bcx.is_unreachable() {
return C_undef(ll_fty.ptr_to());
}
let ptr_val = if needs_cast {
let fields = fields.iter().map(|&ty| {
type_of::in_memory_type_of(ccx, ty)
}).collect::<Vec<_>>();
let real_ty = Type::struct_(ccx, &fields[..], st.packed);
bcx.pointercast(val.value, real_ty.ptr_to())
} else {
val.value
};
// Simple case - we can just GEP the field
// * First field - Always aligned properly
// * Packed struct - There is no alignment padding
// * Field is sized - pointer is properly aligned already
if ix == 0 || st.packed || type_is_sized(bcx.tcx(), fty) {
return bcx.struct_gep(ptr_val, ix);
}
// If the type of the last field is [T] or str, then we don't need to do
// any adjusments
match fty.sty {
ty::TySlice(..) | ty::TyStr => {
return bcx.struct_gep(ptr_val, ix);
}
_ => ()
}
// There's no metadata available, log the case and just do the GEP.
if !val.has_meta() {
debug!("Unsized field `{}`, of `{:?}` has no metadata for adjustment",
ix, Value(ptr_val));
return bcx.struct_gep(ptr_val, ix);
}
let dbloc = DebugLoc::None;
// We need to get the pointer manually now.
// We do this by casting to a *i8, then offsetting it by the appropriate amount.
// We do this instead of, say, simply adjusting the pointer from the result of a GEP
// because the field may have an arbitrary alignment in the LLVM representation
// anyway.
//
// To demonstrate:
// struct Foo<T: ?Sized> {
// x: u16,
// y: T
// }
//
// The type Foo<Foo<Trait>> is represented in LLVM as { u16, { u16, u8 }}, meaning that
// the `y` field has 16-bit alignment.
let meta = val.meta;
let offset = st.offsets[ix].bytes();
let unaligned_offset = C_uint(bcx.ccx(), offset);
// Get the alignment of the field
let (_, align) = glue::size_and_align_of_dst(bcx, fty, meta);
// Bump the unaligned offset up to the appropriate alignment using the
// following expression:
//
// (unaligned offset + (align - 1)) & -align
// Calculate offset
dbloc.apply(bcx.fcx());
let align_sub_1 = bcx.sub(align, C_uint(bcx.ccx(), 1u64));
let offset = bcx.and(bcx.add(unaligned_offset, align_sub_1),
bcx.neg(align));
debug!("struct_field_ptr: DST field offset: {:?}", Value(offset));
// Cast and adjust pointer
let byte_ptr = bcx.pointercast(ptr_val, Type::i8p(bcx.ccx()));
let byte_ptr = bcx.gep(byte_ptr, &[offset]);
// Finally, cast back to the type expected
let ll_fty = type_of::in_memory_type_of(bcx.ccx(), fty);
debug!("struct_field_ptr: Field type is {:?}", ll_fty);
bcx.pointercast(byte_ptr, ll_fty.ptr_to())
}
/// Construct a constant value, suitable for initializing a
/// GlobalVariable, given a case and constant values for its fields.
/// Note that this may have a different LLVM type (and different
/// alignment!) from the representation's `type_of`, so it needs a
/// pointer cast before use.
///
/// The LLVM type system does not directly support unions, and only
/// pointers can be bitcast, so a constant (and, by extension, the
/// GlobalVariable initialized by it) will have a type that can vary
/// depending on which case of an enum it is.
///
/// To understand the alignment situation, consider `enum E { V64(u64),
/// V32(u32, u32) }` on Windows. The type has 8-byte alignment to
/// accommodate the u64, but `V32(x, y)` would have LLVM type `{i32,
/// i32, i32}`, which is 4-byte aligned.
///
/// Currently the returned value has the same size as the type, but
/// this could be changed in the future to avoid allocating unnecessary
/// space after values of shorter-than-maximum cases.
pub fn trans_const<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, t: Ty<'tcx>, discr: Disr,
vals: &[ValueRef]) -> ValueRef {
let l = ccx.layout_of(t);
let dl = &ccx.tcx().data_layout;
match *l {
layout::CEnum { discr: d, min, max, .. } => {
assert_eq!(vals.len(), 0);
assert_discr_in_range(Disr(min), Disr(max), discr);
C_integral(Type::from_integer(ccx, d), discr.0, true)
}
layout::General { discr: d, ref variants, .. } => {
let variant = &variants[discr.0 as usize];
let lldiscr = C_integral(Type::from_integer(ccx, d), discr.0 as u64, true);
let mut vals_with_discr = vec![lldiscr];
vals_with_discr.extend_from_slice(vals);
let mut contents = build_const_struct(ccx, &variant,
&vals_with_discr[..]);
let needed_padding = l.size(dl).bytes() - variant.min_size.bytes();
if needed_padding > 0 {
contents.push(padding(ccx, needed_padding));
}
C_struct(ccx, &contents[..], false)
}
layout::UntaggedUnion { ref variants, .. }=> {
assert_eq!(discr, Disr(0));
let contents = build_const_union(ccx, variants, vals[0]);
C_struct(ccx, &contents, variants.packed)
}
layout::Univariant { ref variant, .. } => {
assert_eq!(discr, Disr(0));
let contents = build_const_struct(ccx,
&variant, vals);
C_struct(ccx, &contents[..], variant.packed)
}
layout::Vector { .. } => {
C_vector(vals)
}
layout::RawNullablePointer { nndiscr, .. } => {
let nnty = compute_fields(ccx, t, nndiscr as usize, false)[0];
if discr.0 == nndiscr {
assert_eq!(vals.len(), 1);
vals[0]
} else {
C_null(type_of::sizing_type_of(ccx, nnty))
}
}
layout::StructWrappedNullablePointer { ref nonnull, nndiscr, .. } => {
if discr.0 == nndiscr {
C_struct(ccx, &build_const_struct(ccx, &nonnull, vals),
false)
} else {
let fields = compute_fields(ccx, t, nndiscr as usize, false);
let vals = fields.iter().map(|&ty| {
// Always use null even if it's not the `discrfield`th
// field; see #8506.
C_null(type_of::sizing_type_of(ccx, ty))
}).collect::<Vec<ValueRef>>();
C_struct(ccx, &build_const_struct(ccx, &nonnull, &vals[..]),
false)
}
}
_ => bug!("trans_const: cannot handle type {} repreented as {:#?}", t, l)
}
}
/// Building structs is a little complicated, because we might need to
/// insert padding if a field's value is less aligned than its type.
///
/// Continuing the example from `trans_const`, a value of type `(u32,
/// E)` should have the `E` at offset 8, but if that field's
/// initializer is 4-byte aligned then simply translating the tuple as
/// a two-element struct will locate it at offset 4, and accesses to it
/// will read the wrong memory.
fn build_const_struct<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
st: &layout::Struct,
vals: &[ValueRef])
-> Vec<ValueRef> {
assert_eq!(vals.len(), st.offsets.len());
if vals.len() == 0 {
return Vec::new();
}
// offset of current value
let mut offset = 0;
let mut cfields = Vec::new();
let offsets = st.offsets.iter().map(|i| i.bytes());
for (&val, target_offset) in vals.iter().zip(offsets) {
if offset < target_offset {
cfields.push(padding(ccx, target_offset - offset));
offset = target_offset;
}
assert!(!is_undef(val));
cfields.push(val);
offset += machine::llsize_of_alloc(ccx, val_ty(val));
}
if offset < st.stride().bytes() {
cfields.push(padding(ccx, st.stride().bytes() - offset));
}
cfields
}
fn build_const_union<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
un: &layout::Union,
field_val: ValueRef)
-> Vec<ValueRef> {
let mut cfields = vec![field_val];
let offset = machine::llsize_of_alloc(ccx, val_ty(field_val));
let size = un.stride().bytes();
if offset != size {
cfields.push(padding(ccx, size - offset));
}
cfields
}
fn padding(ccx: &CrateContext, size: u64) -> ValueRef {
C_undef(Type::array(&Type::i8(ccx), size))
}
// FIXME this utility routine should be somewhere more general
#[inline]
fn roundup(x: u64, a: u32) -> u64 { let a = a as u64; ((x + (a - 1)) / a) * a }
/// Extract a field of a constant value, as appropriate for its
/// representation.
///
/// (Not to be confused with `common::const_get_elt`, which operates on
/// raw LLVM-level structs and arrays.)
pub fn const_get_field<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, t: Ty<'tcx>,
val: ValueRef, _discr: Disr,
ix: usize) -> ValueRef {
let l = ccx.layout_of(t);
match *l {
layout::CEnum { .. } => bug!("element access in C-like enum const"),
layout::Univariant { .. } | layout::Vector { .. } => const_struct_field(val, ix),
layout::UntaggedUnion { .. } => const_struct_field(val, 0),
layout::General { .. } => const_struct_field(val, ix + 1),
layout::RawNullablePointer { .. } => {
assert_eq!(ix, 0);
val
},
layout::StructWrappedNullablePointer{ .. } => const_struct_field(val, ix),
_ => bug!("{} does not have fields.", t)
}
}
/// Extract field of struct-like const, skipping our alignment padding.
fn const_struct_field(val: ValueRef, ix: usize) -> ValueRef {
// Get the ix-th non-undef element of the struct.
let mut real_ix = 0; // actual position in the struct
let mut ix = ix; // logical index relative to real_ix
let mut field;
loop {
loop {
field = const_get_elt(val, &[real_ix]);
if !is_undef(field) {
break;
}
real_ix = real_ix + 1;
}
if ix == 0 {
return field;
}
ix = ix - 1;
real_ix = real_ix + 1;
}
}