-
Notifications
You must be signed in to change notification settings - Fork 191
/
efuse.c
187 lines (154 loc) · 4.51 KB
/
efuse.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/* Copyright(c) 2018-2019 Realtek Corporation
*/
#include <linux/iopoll.h>
#include "main.h"
#include "efuse.h"
#include "reg.h"
#include "debug.h"
#define RTW_EFUSE_BANK_WIFI 0x0
static void switch_efuse_bank(struct rtw_dev *rtwdev)
{
rtw_write32_mask(rtwdev, REG_LDO_EFUSE_CTRL, BIT_MASK_EFUSE_BANK_SEL,
RTW_EFUSE_BANK_WIFI);
}
#define invalid_efuse_header(hdr1, hdr2) \
((hdr1) == 0xff || (((hdr1) & 0x1f) == 0xf && (hdr2) == 0xff))
#define invalid_efuse_content(word_en, i) \
(((word_en) & BIT(i)) != 0x0)
#define get_efuse_blk_idx_2_byte(hdr1, hdr2) \
((((hdr2) & 0xf0) >> 1) | (((hdr1) >> 5) & 0x07))
#define get_efuse_blk_idx_1_byte(hdr1) \
(((hdr1) & 0xf0) >> 4)
#define block_idx_to_logical_idx(blk_idx, i) \
(((blk_idx) << 3) + ((i) << 1))
/* efuse header format
*
* | 7 5 4 0 | 7 4 3 0 | 15 8 7 0 |
* block[2:0] 0 1111 block[6:3] word_en[3:0] byte0 byte1
* | header 1 (optional) | header 2 | word N |
*
* word_en: 4 bits each word. 0 -> write; 1 -> not write
* N: 1~4, depends on word_en
*/
static int rtw_dump_logical_efuse_map(struct rtw_dev *rtwdev, u8 *phy_map,
u8 *log_map)
{
u32 physical_size = rtwdev->efuse.physical_size;
u32 protect_size = rtwdev->efuse.protect_size;
u32 logical_size = rtwdev->efuse.logical_size;
u32 phy_idx, log_idx;
u8 hdr1, hdr2;
u8 blk_idx;
u8 word_en;
int i;
for (phy_idx = 0; phy_idx < physical_size - protect_size;) {
hdr1 = phy_map[phy_idx];
hdr2 = phy_map[phy_idx + 1];
if (invalid_efuse_header(hdr1, hdr2))
break;
if ((hdr1 & 0x1f) == 0xf) {
/* 2-byte header format */
blk_idx = get_efuse_blk_idx_2_byte(hdr1, hdr2);
word_en = hdr2 & 0xf;
phy_idx += 2;
} else {
/* 1-byte header format */
blk_idx = get_efuse_blk_idx_1_byte(hdr1);
word_en = hdr1 & 0xf;
phy_idx += 1;
}
for (i = 0; i < 4; i++) {
if (invalid_efuse_content(word_en, i))
continue;
log_idx = block_idx_to_logical_idx(blk_idx, i);
if (phy_idx + 1 > physical_size - protect_size ||
log_idx + 1 > logical_size)
return -EINVAL;
log_map[log_idx] = phy_map[phy_idx];
log_map[log_idx + 1] = phy_map[phy_idx + 1];
phy_idx += 2;
}
}
return 0;
}
static int rtw_dump_physical_efuse_map(struct rtw_dev *rtwdev, u8 *map)
{
const struct rtw_chip_info *chip = rtwdev->chip;
u32 size = rtwdev->efuse.physical_size;
u32 efuse_ctl;
u32 addr;
u32 cnt;
rtw_chip_efuse_grant_on(rtwdev);
switch_efuse_bank(rtwdev);
/* disable 2.5V LDO */
chip->ops->cfg_ldo25(rtwdev, false);
efuse_ctl = rtw_read32(rtwdev, REG_EFUSE_CTRL);
for (addr = 0; addr < size; addr++) {
efuse_ctl &= ~(BIT_MASK_EF_DATA | BITS_EF_ADDR);
efuse_ctl |= (addr & BIT_MASK_EF_ADDR) << BIT_SHIFT_EF_ADDR;
rtw_write32(rtwdev, REG_EFUSE_CTRL, efuse_ctl & (~BIT_EF_FLAG));
cnt = 1000000;
do {
udelay(1);
efuse_ctl = rtw_read32(rtwdev, REG_EFUSE_CTRL);
if (--cnt == 0)
return -EBUSY;
} while (!(efuse_ctl & BIT_EF_FLAG));
*(map + addr) = (u8)(efuse_ctl & BIT_MASK_EF_DATA);
}
rtw_chip_efuse_grant_off(rtwdev);
return 0;
}
int rtw_read8_physical_efuse(struct rtw_dev *rtwdev, u16 addr, u8 *data)
{
u32 efuse_ctl;
int ret;
rtw_write32_mask(rtwdev, REG_EFUSE_CTRL, 0x3ff00, addr);
rtw_write32_clr(rtwdev, REG_EFUSE_CTRL, BIT_EF_FLAG);
ret = read_poll_timeout(rtw_read32, efuse_ctl, efuse_ctl & BIT_EF_FLAG,
1000, 100000, false, rtwdev, REG_EFUSE_CTRL);
if (ret) {
*data = EFUSE_READ_FAIL;
return ret;
}
*data = rtw_read8(rtwdev, REG_EFUSE_CTRL);
return 0;
}
EXPORT_SYMBOL(rtw_read8_physical_efuse);
int rtw_parse_efuse_map(struct rtw_dev *rtwdev)
{
const struct rtw_chip_info *chip = rtwdev->chip;
struct rtw_efuse *efuse = &rtwdev->efuse;
u32 phy_size = efuse->physical_size;
u32 log_size = efuse->logical_size;
u8 *phy_map = NULL;
u8 *log_map = NULL;
int ret = 0;
phy_map = kmalloc(phy_size, GFP_KERNEL);
log_map = kmalloc(log_size, GFP_KERNEL);
if (!phy_map || !log_map) {
ret = -ENOMEM;
goto out_free;
}
ret = rtw_dump_physical_efuse_map(rtwdev, phy_map);
if (ret) {
rtw_err(rtwdev, "failed to dump efuse physical map\n");
goto out_free;
}
memset(log_map, 0xff, log_size);
ret = rtw_dump_logical_efuse_map(rtwdev, phy_map, log_map);
if (ret) {
rtw_err(rtwdev, "failed to dump efuse logical map\n");
goto out_free;
}
ret = chip->ops->read_efuse(rtwdev, log_map);
if (ret) {
rtw_err(rtwdev, "failed to read efuse map\n");
goto out_free;
}
out_free:
kfree(log_map);
kfree(phy_map);
return ret;
}