forked from open-mmlab/mmpose
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstats.py
executable file
·176 lines (133 loc) · 4.9 KB
/
stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#!/usr/bin/env python
# Copyright (c) OpenMMLab. All rights reserved.
import functools as func
import glob
import re
from os.path import basename, splitext
import numpy as np
import titlecase
def anchor(name):
return re.sub(r'-+', '-', re.sub(r'[^a-zA-Z0-9]', '-',
name.strip().lower())).strip('-')
# Count algorithms
files = sorted(glob.glob('topics/*.md'))
stats = []
for f in files:
with open(f, 'r', encoding='utf-8') as content_file:
content = content_file.read()
# title
title = content.split('\n')[0].replace('#', '')
# count papers
papers = set(
(papertype, titlecase.titlecase(paper.lower().strip()))
for (papertype, paper) in re.findall(
r'<!--\s*\[([A-Z]*?)\]\s*-->\s*\n.*?\btitle\s*=\s*{(.*?)}',
content, re.DOTALL))
# paper links
revcontent = '\n'.join(list(reversed(content.splitlines())))
paperlinks = {}
for _, p in papers:
print(p)
paperlinks[p] = ', '.join(
((f'[{paperlink} ⇨]'
f'(topics/{splitext(basename(f))[0]}.html#{anchor(paperlink)})')
for paperlink in re.findall(
rf'\btitle\s*=\s*{{\s*{p}\s*}}.*?\n### (.*?)\s*[,;]?\s*\n',
revcontent, re.DOTALL | re.IGNORECASE)))
print(' ', paperlinks[p])
paperlist = '\n'.join(
sorted(f' - [{t}] {x} ({paperlinks[x]})' for t, x in papers))
# count configs
configs = set(x.lower().strip()
for x in re.findall(r'.*configs/.*\.py', content))
# count ckpts
ckpts = set(x.lower().strip()
for x in re.findall(r'https://download.*\.pth', content)
if 'mmpose' in x)
statsmsg = f"""
## [{title}]({f})
* Number of checkpoints: {len(ckpts)}
* Number of configs: {len(configs)}
* Number of papers: {len(papers)}
{paperlist}
"""
stats.append((papers, configs, ckpts, statsmsg))
allpapers = func.reduce(lambda a, b: a.union(b), [p for p, _, _, _ in stats])
allconfigs = func.reduce(lambda a, b: a.union(b), [c for _, c, _, _ in stats])
allckpts = func.reduce(lambda a, b: a.union(b), [c for _, _, c, _ in stats])
# Summarize
msglist = '\n'.join(x for _, _, _, x in stats)
papertypes, papercounts = np.unique([t for t, _ in allpapers],
return_counts=True)
countstr = '\n'.join(
[f' - {t}: {c}' for t, c in zip(papertypes, papercounts)])
modelzoo = f"""
# Overview
* Number of checkpoints: {len(allckpts)}
* Number of configs: {len(allconfigs)}
* Number of papers: {len(allpapers)}
{countstr}
For supported datasets, see [datasets overview](datasets.md).
{msglist}
"""
with open('modelzoo.md', 'w', encoding='utf-8') as f:
f.write(modelzoo)
# Count datasets
files = sorted(glob.glob('tasks/*.md'))
# files = sorted(glob.glob('docs/tasks/*.md'))
datastats = []
for f in files:
with open(f, 'r', encoding='utf-8') as content_file:
content = content_file.read()
# title
title = content.split('\n')[0].replace('#', '')
# count papers
papers = set(
(papertype, titlecase.titlecase(paper.lower().strip()))
for (papertype, paper) in re.findall(
r'<!--\s*\[([A-Z]*?)\]\s*-->\s*\n.*?\btitle\s*=\s*{(.*?)}',
content, re.DOTALL))
# paper links
revcontent = '\n'.join(list(reversed(content.splitlines())))
paperlinks = {}
for _, p in papers:
print(p)
paperlinks[p] = ', '.join(
(f'[{p} ⇨](tasks/{splitext(basename(f))[0]}.html#{anchor(p)})'
for p in re.findall(
rf'\btitle\s*=\s*{{\s*{p}\s*}}.*?\n## (.*?)\s*[,;]?\s*\n',
revcontent, re.DOTALL | re.IGNORECASE)))
print(' ', paperlinks[p])
paperlist = '\n'.join(
sorted(f' - [{t}] {x} ({paperlinks[x]})' for t, x in papers))
# count configs
configs = set(x.lower().strip()
for x in re.findall(r'https.*configs/.*\.py', content))
# count ckpts
ckpts = set(x.lower().strip()
for x in re.findall(r'https://download.*\.pth', content)
if 'mmpose' in x)
statsmsg = f"""
## [{title}]({f})
* Number of papers: {len(papers)}
{paperlist}
"""
datastats.append((papers, configs, ckpts, statsmsg))
alldatapapers = func.reduce(lambda a, b: a.union(b),
[p for p, _, _, _ in datastats])
# Summarize
msglist = '\n'.join(x for _, _, _, x in stats)
datamsglist = '\n'.join(x for _, _, _, x in datastats)
papertypes, papercounts = np.unique([t for t, _ in alldatapapers],
return_counts=True)
countstr = '\n'.join(
[f' - {t}: {c}' for t, c in zip(papertypes, papercounts)])
modelzoo = f"""
# Overview
* Number of papers: {len(alldatapapers)}
{countstr}
For supported pose algorithms, see [modelzoo overview](modelzoo.md).
{datamsglist}
"""
with open('datasets.md', 'w', encoding='utf-8') as f:
f.write(modelzoo)