forked from tuckermcclure/how-kalman-filters-work-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathukf.m
144 lines (127 loc) · 5.29 KB
/
ukf.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
function [x, P, x_kkm1, P_kkm1, P_xz, P_zz, K] = ukf( ...
t_km1, t_k, x, P, u_km1, z_k, ...
f, h, Q_km1, R_k, ...
alpha, beta, kappa, ...
varargin)
% ukf
%
% Run one update of a basic unscented (sigma point) Kalman filter. The
% advantage of a UKF over a traditional extended Kalman filter is that the
% UKF can be more accurate when the propagation/measurement functions are
% not zero-mean wrt the error (that is, they are significantly nonlinear in
% terms of their errors). Further, since a UKF doesn't require Jacobians,
% it's often easier to use a UKF than an EKF. The disadvantage is increased
% runtime. Though a UKF operates "on the order" of an EKF, in
% implementation it often takes several times longer.
%
% [x_k, P_k] = ukf(t_km1, t_k, x_km1, P_km1, u_km1, z_k, ...
% f, h, Q_km1, R_k, ...
% alpha, beta, kappa, ...
% (etc.))
%
% Inputs:
%
% t_km1 Time at sample k-1
% t_k Time at sample k
% x_km1 State estimate at sample k-1
% P_km1 Estimate covariance at sample k-1
% u_km1 Input vector at sample k-1
% z_k Measurement at sample k
% f Propagation function with interface:
%
% x_k = f([t_km1, t_k], x_km1, u_km1, q_km1)
%
% where |q_km1| is the process noise at sample k-1
%
% h Measurement function with interface:
%
% z_k = h(t_k, x_k, u_km1, r_k)
%
% where |r_k| is the measurement noise at sample k
%
% Q_km1 Pocess noise covariance at sample k-1
% R_k Measurement noise covariance at sample k
% alpha Optional turning parameter (e.g., 0.001)
% beta Optional tuning parameter, with 2 being optimal for Gaussian
% estimation error
% kappa Optional tuning parameter, often 3 - |nx|, where |nx| is the
% dimension of the state
% (etc.) Additional arguments to be passed to |f| and |h| after their
% normal arguments
%
% Outputs:
%
% x Upated estimate at sample k
% P Updated estimate covariance at sample k
%
% Reference:
%
% Wan, Eric A. and Rudoph van der Merwe. "The Unscented Kalman Filter."
% _Kalman Filtering and Neural Networks._ Ed. Simon Haykin. New York: John
% Wiley & Sons, Inc., 2001. Print. Pages 221-276.
%
% See <https://www.anuncommonlab.com/doc/starkf/ukf.html> for more.
% Copyright 2016 An Uncommon Lab
% Defaults
if nargin < 11 || isempty(alpha), alpha = 0.001; end;
if nargin < 12 || isempty(beta), beta = 2; end;
if nargin < 13 || isempty(kappa), kappa = 3 - numel(x); end;
% Dimensions
nx = length(x); % Number of states
nq = size(Q_km1, 1); % Number of noise states
nz = size(R_k, 1); % Number of observations
L = nx + nq + nz; % Dimension of augmented state
ns = 2 * L + 1; % Number of sigma points
% Weights
lambda = alpha ^2 * (L + kappa) - L;
gamma = sqrt(L + lambda);
W_m_0 = lambda / (L + lambda);
W_c_0 = W_m_0 + 1 - alpha^2 + beta;
W_i = 1/(2*(L + lambda));
% Create the augmented system.
P_a = blkdiag(P, Q_km1, R_k);
x_a_km1 = [x; zeros(nq, 1); zeros(nz, 1)];
% Create the sigma points. (We use svd instead of chol in case there's
% a 0 eigenvalue.)
[u, s] = svd(P_a);
gamma_sqrt_P_a = gamma * u * sqrt(s);
X_a_km1 = [x_a_km1, ...
repmat(x_a_km1, 1, L) + gamma_sqrt_P_a, ...
repmat(x_a_km1, 1, L) - gamma_sqrt_P_a];
% Predict sigma points and measurements.
Z_kkm1 = zeros(nz, ns);
X_x_kkm1 = zeros(nx, ns);
for sp = 1:ns
X_x_kkm1(:, sp) = f(t_km1, t_k, ... % Times
X_a_km1(1:nx, sp), ... % State k-1
u_km1, ... % Input
X_a_km1(nx+1:nx+nq, sp), ... % Proc. noise
varargin{:}); % Et al.
Z_kkm1(:, sp) = h(t_k, ... % Time k
X_x_kkm1(:, sp), ... % State k|k-1
u_km1, ... % Input
X_a_km1(nx+nq+1:nx+nq+nz, sp), ...% Meas. noise
varargin{:}); % Et al.
end
% Expected prediction and measurement
x_kkm1 = W_m_0 * X_x_kkm1(:, 1) + W_i * sum(X_x_kkm1(:, 2:end), 2);
z_kkm1 = W_m_0 * Z_kkm1(:, 1) + W_i * sum(Z_kkm1(:, 2:end), 2);
% Remove expectations from X_x_kkm1 and Z_kkm1.
X_x_kkm1 = bsxfun(@minus, X_x_kkm1, x_kkm1);
Z_kkm1 = bsxfun(@minus, Z_kkm1, z_kkm1);
% Calculate covariance of the prediction.
P_kkm1 = (W_c_0 * X_x_kkm1(:, 1)) * X_x_kkm1(:, 1).' ...
+ W_i * (X_x_kkm1(:, 2:end) * X_x_kkm1(:, 2:end).');
% Covariance of predicted observation
P_zz = (W_c_0 * Z_kkm1(:, 1)) * Z_kkm1(:, 1).' ...
+ W_i * (Z_kkm1(:, 2:end) * Z_kkm1(:, 2:end).');
% Covariance of predicted observation and predicted state
P_xz = (W_c_0 * X_x_kkm1(:, 1)) * Z_kkm1(:, 1).' ...
+ W_i * (X_x_kkm1(:, 2:end) * Z_kkm1(:, 2:end).');
% Kalman gain
K = P_xz / P_zz;
% Correct the state.
x = x_kkm1 + K * (z_k - z_kkm1);
% Correct the covariance.
P = P_kkm1 - K * P_zz * K.';
end % ukf