-
Notifications
You must be signed in to change notification settings - Fork 126
/
run_clm_llms.py
597 lines (513 loc) · 21.5 KB
/
run_clm_llms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
#!/usr/bin/env python
# coding=utf-8
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
import logging
import math
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional
import datasets
import evaluate
import torch
from datasets import load_dataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_FOR_CAUSAL_LM_MAPPING,
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
is_torch_tpu_available,
set_seed,
)
from llm_trainer import LLMTrainer, inference_generation
from transformers.testing_utils import CaptureLogger
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
# xxx: 2023-03-21
import copy
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from transformers import CLIPProcessor, CLIPModel, CLIPConfig, LlamaConfig, WhisperConfig, WhisperModel, LlamaModel, LlamaTokenizer
from transformers import AutoConfig, AutoModel
import torch.distributed as dist
from torch.nn import CrossEntropyLoss
import argparse
import sklearn.metrics as metric
import glob
import logging
import os
import random
import numpy as np
import json
import pickle
import codecs
from PIL import Image
from peft import PeftModel
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
try:
from torchvision.transforms import InterpolationMode
BICUBIC = InterpolationMode.BICUBIC
except ImportError:
BICUBIC = Image.BICUBIC
from tqdm import tqdm, trange
from sklearn.metrics import top_k_accuracy_score
from transformers import (
WEIGHTS_NAME,
AdamW,
get_linear_schedule_with_warmup,
)
from peft import (
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
# prepare_model_for_int8_training,
set_peft_model_state_dict,
)
from modeling import MM_LLMs, MM_LLMs_Config
import clip
import whisper
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboardX import SummaryWriter
json_load = lambda x: json.load(codecs.open(x, 'r', encoding='utf-8'))
json_dump = lambda d, p: json.dump(d, codecs.open(p, 'w', 'utf-8'), indent=2, ensure_ascii=False)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.27.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
# xxx: 2023-03-21
IGNORE_INDEX = -100
DEFAULT_PAD_TOKEN = "[PAD]"
DEFAULT_EOS_TOKEN = "</s>"
DEFAULT_BOS_TOKEN = "<s>"
DEFAULT_UNK_TOKEN = "<unk>"
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": (
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
)
},
)
model_type: Optional[str] = field(
default=None,
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
)
config_overrides: Optional[str] = field(
default=None,
metadata={
"help": (
"Override some existing default config settings when a model is trained from scratch. Example: "
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
)
},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
},
)
torch_dtype: Optional[str] = field(
default=None,
metadata={
"help": (
"Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the "
"dtype will be automatically derived from the model's weights."
),
"choices": ["auto", "bfloat16", "float16", "float32"],
},
)
n_frames: Optional[int] = field(
default=6,
metadata={
"help": "The number of frames for encoding a video."
},
)
attention_heads: Optional[int] = field(
default=220,
metadata={
"help": "The number of attention heads used in multi-head-attention."
},
)
image_conv_kernel: Optional[int] = field(
default=48,
metadata={
"help": "The size of the convolutional kernel for the image stream."
},
)
image_conv_stride: Optional[int] = field(
default=36,
metadata={
"help": "The stride of the convolutional kernel for the image stream."
},
)
video_conv_kernel: Optional[int] = field(
default=36,
metadata={
"help": "The size of the convolutional kernel for the video stream."
},
)
video_conv_stride: Optional[int] = field(
default=30,
metadata={
"help": "The stride of the convolutional kernel for the video stream."
},
)
audio_conv_kernel: Optional[int] = field(
default=240,
metadata={
"help": "The size of the convolutional kernel for the audio stream."
},
)
audio_conv_stride: Optional[int] = field(
default=220,
metadata={
"help": "The stride of the convolutional kernel for the audio stream."
},
)
freeze_multi_modal_encoder: bool = field(
default=False,
metadata={
"help": (
"Whether to freeze the parameters of multi-modal encoders during training.)."
)
},
)
def __post_init__(self):
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
raise ValueError(
"--config_overrides can't be used in combination with --config_name or --model_name_or_path"
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
streaming: bool = field(default=False, metadata={"help": "Enable streaming mode"})
block_size: Optional[int] = field(
default=None,
metadata={
"help": (
"Optional input sequence length after tokenization. "
"The training dataset will be truncated in block of this size for training. "
"Default to the model max input length for single sentence inputs (take into account special tokens)."
)
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
validation_split_percentage: Optional[int] = field(
default=5,
metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
keep_linebreaks: bool = field(
default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."}
)
def __post_init__(self):
if self.streaming:
require_version("datasets>=2.0.0", "The streaming feature requires `datasets>=2.0.0`")
def draw_samples(lis, ratio):
samples = ratio if ratio > 1 else int(ratio * len(lis))
if samples > len(lis):
new_lis = np.random.choice(len(lis), samples, replace=True)
else:
new_lis = np.random.choice(len(lis), samples, replace=False)
n_lis = [lis[i] for i in new_lis]
return n_lis
def load_datasets(data_args):
from datasets.dataset_dict import DatasetDict
from datasets import Dataset
data_dir = data_args.train_file
video_names = ["data/avsd/train_video_names.json", "data/vqa/vqa_video_names.json"]
all_train_dataset = pickle.load(
open(data_dir, 'rb'))
print(type(all_train_dataset))
for k in all_train_dataset:
print(k, all_train_dataset[k][0])
# labels = copy.deepcopy(all_train_dataset["input_ids"])
# all_train_dataset['labels'] = labels
pad_token_id = 32006
all_train_dataset['labels'] = [[(l if l != pad_token_id else IGNORE_INDEX) for l in label]
for label in all_train_dataset['labels']]
vname = json_load(video_names[0])['data']
vname.extend(json_load(video_names[1])['data'])
visual_data_names = {'data': vname}
all_train_dataset['images'] = [[e] for e in all_train_dataset['images']]
all_train_dataset['audios'] = [[e] for e in all_train_dataset['audios']]
all_train_dataset['videos'] = [[e] for e in all_train_dataset['videos']]
# all_train_dataset = TensorDataset(all_train_dataset['images'], all_train_dataset['audios'],
# all_train_dataset['videos'], all_train_dataset['input_ids'], all_train_dataset['labels'])
eval_offset = 200
train_dataset = {'train': Dataset.from_dict({k: all_train_dataset[k] for k in all_train_dataset})}
train_dataset = DatasetDict(train_dataset)
all_train_dataset = (train_dataset['train'], visual_data_names)
return all_train_dataset
def prepare_model_for_training(model_args, model, use_gradient_checkpointing=True):
r"""
This method wraps the entire protocol for preparing a model before running a training. This includes:
1- Cast the layernorm in fp32 2- making output embedding layer require grads 3- Add the upcasting of the lm
head to fp32
Args:
model, (`transformers.PreTrainedModel`):
The loaded model from `transformers`
"""
loaded_in_8bit = getattr(model, "is_loaded_in_8bit", False)
for name, param in model.named_parameters():
# freeze base model's layers
if ('encoder' in name):
param.requires_grad = False if model_args.freeze_multi_modal_encoder is True else False
# for name, param in model.named_parameters():
# # freeze base model's layers
# if ('embed_token' in name or 'lm_head' in name):
# param.requires_grad = True
return model
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# print(training_args)
training_args.remove_unused_columns=False
tokenizer = AutoTokenizer.from_pretrained('trained_models/llama_tokenizer')
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_clm", model_args, data_args)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
set_seed(training_args.seed)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
# load model
clip_config = CLIPConfig.from_pretrained('trained_models/clip_model')
whisper_config = WhisperConfig.from_pretrained('trained_models/whisper_model')
llm_config = AutoConfig.from_pretrained('trained_models/llama_model')
model_config = MM_LLMs_Config(
n_frames=model_args.n_frames,
attention_heads=model_args.attention_heads,
image_conv_kernel=model_args.image_conv_kernel,
image_conv_stride=model_args.image_conv_stride,
video_conv_kernel=model_args.video_conv_kernel,
video_conv_stride=model_args.video_conv_stride,
audio_conv_kernel=model_args.audio_conv_kernel,
audio_conv_stride=model_args.audio_conv_stride,
clip_config=clip_config, whisper_config=whisper_config, llm_config=llm_config)
# load model separately
model = MM_LLMs(config=model_config)
model.image_encoder.from_pretrained('trained_models/clip-vit-base-patch16')
model.video_encoder.from_pretrained('trained_models/clip-vit-base-patch16')
model.audio_encoder.from_pretrained('trained_models/whisper-base')
model.llm.from_pretrained('trained_models/llama_model')
# # load the whole model together
# model = MM_LLMs.from_pretrained(
# 'trained_models/MM_LLMs_init',
# # 'trained_models/MM-LLMs/mm_llms_trainer_forth',
# config = model_config,
# # load_in_8bit=True,
# # torch_dtype=torch.float16,
# # device_map=device_map,
# )
model.llm.resize_token_embeddings(len(tokenizer))
model = prepare_model_for_training(model_args, model)
# # lora training
# lora_config = LoraConfig(
# r=8,
# lora_alpha=16,
# # target_modules=["q_proj","v_proj", "embed_tokens", "lm_head"],
# target_modules=["q_proj", "k_proj", "v_proj", "out_proj", "fc_in", "fc_out", "wte", "embed_tokens", "lm_head"],
# lora_dropout=0.05,
# bias="none",
# task_type="CAUSAL_LM",
# )
# model.llm = get_peft_model(model.llm, lora_config)
if training_args.local_rank == 0:
print(model)
for name, param in model.named_parameters():
if param.requires_grad:
print(name)
def preprocess_logits_for_metrics(logits, labels):
if isinstance(logits, tuple):
# Depending on the model and config, logits may contain extra tensors,
# like past_key_values, but logits always come first
logits = logits[0]
return logits.argmax(dim=-1)
metric = evaluate.load("accuracy")
def compute_metrics(eval_preds):
preds, labels = eval_preds
# preds have the same shape as the labels, after the argmax(-1) has been calculated
# by preprocess_logits_for_metrics but we need to shift the labels
labels = labels[:, 1:].reshape(-1)
preds = preds[:, :-1].reshape(-1)
return metric.compute(predictions=preds, references=labels)
train_dataset, visual_names = load_datasets(data_args)
if training_args.do_train:
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
# xxx: print samples
logger.info("xxx: Showcase the tokenized training samples.")
for i in range(3):
print(next(iter(train_dataset)))
# Initialize our Trainer
trainer = LLMTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=None,
tokenizer=tokenizer,
# Data collator will default to DataCollatorWithPadding, so we change it.
data_collator=default_data_collator,
compute_metrics=compute_metrics,
preprocess_logits_for_metrics=preprocess_logits_for_metrics if training_args.do_eval
and not is_torch_tpu_available() else None,
)
# Training
if training_args.do_train:
checkpoint = None
# if training_args.resume_from_checkpoint is not None:
# checkpoint = training_args.resume_from_checkpoint
# elif last_checkpoint is not None:
# checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model(output_dir=training_args.output_dir) # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
if training_args.do_eval:
tokenizer = LlamaTokenizer.from_pretrained('trained_models/llama_tokenizer')
model = trainer.get_model()
image_dirs = ['None', 'None', 'None']
video_dirs = ['None', 'data/avsd/frames/7UPGT', 'data/avsd/frames/3MSZA']
audio_dirs = ['None', 'data/avsd/audios/7UPGT', 'data/avsd/audios/3MSZA']
prompt = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{}\n\n### Response:"
instructions = [prompt.format('Give three tips for staying healthy.'),
prompt.format('Does the woman eat or drink anything?'),
prompt.format('What\'s on the table next to her?')]
inference_generation(model, tokenizer, image_dirs, audio_dirs, video_dirs, instructions)
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()