forked from pat-langevin/yolov5_transformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrack.py
388 lines (330 loc) · 15.3 KB
/
track.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import argparse
import time
import math
from pathlib import Path
import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random, argmin
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box_and_dot, plot_line
from utils.torch_utils import select_device, load_classifier, time_synchronized
# class for a positon
class Position:
# initialization of a position
def __init__(self, x, y):
self.x = x
self.y = y
# find the score from a point to this point
# based on the pytagore
def score(self, position:'Position') -> float:
return math.sqrt((self.x - position.x)**2 + (self.y - position.y)**2)
# class of a track
# is used to keep all the values needed to draw a track on a frame
# keeps the statuses
class Track:
# initialization of a track
def __init__(self, color, track_id, isUsed, position_list:[Position]):
self.track_id = track_id # id
self.color = color # the color
self.isActive = True # set the track to active
self.position_list = position_list # create an empty list of postion
self.isUsed = isUsed # set the used status
self.step = 0 # step to 0
# add a point/position to a track
def add_position(self, position:Position):
self.position_list.append(position)
# return latest point added to the track, otherwise none
def last_position(self) -> Position:
if(len(self.position_list) == 0):
return None
else:
return self.position_list[-1]
# get if a track is active
def getIsActive(self) -> bool:
return self.isActive
# set active status
def setIsActive(self, isActive):
self.isActive = isActive
# return the id
def getId(self) -> int:
return self.track_id
# set the status for a frame
def setIsUsed(self, value:bool):
self.isUsed = value
# return the status
def getIsUsed(self) -> bool:
return self.isUsed
# return the color
def getColor(self):
return self.color
# return all the position of the track
def getPositionList(self) -> [Position]:
return self.position_list
# return the steps, used to set a track
# to inactive
def increase_step(self):
self.step += 1
# set the step to 0, to keep it active
def reset_step(self):
self.step = 0
# return number of steps
def getStep(self) -> int:
return self.step
# The algorithm to manage the tracks to be drawn on a frame
class Tracking:
# empty list of tracks
def __init__(self, track_list):
self.tracking_list = track_list
# add a track to the track list
def add_track(self, track:Track):
self.tracking_list.append(track)
# return the track list
def get_tracking_list(self) -> []:
return self.tracking_list
# add a position to a track
def add_to_track(self, track_id, position:Position):
for track in self.tracking_list:
if(track.getId() == track_id and track.getIsActive()):
track.add_position(position)
# reset the used status of all the tracks to false
# to be used for the next frame
def reset_tracks(self):
for track in self.tracking_list:
track.setIsUsed(False)
# return a track based on an id
def getTrack(self, track_id) -> Track:
for track in self.tracking_list:
if track.getId() == track_id:
return track
return None
# increase the steps off all the tracks
# if a track has 100 step, it is inactive
# and cannot be used again
def increase_step_all_track(self):
for track in self.tracking_list:
if track.getIsActive():
track.increase_step()
#print(track.getStep())
if track.getStep() >= 100:
#print("False")
track.setIsActive(False)
# return the id of a track based on the best score
# of a position and tyhe lastest point of the not
# used track during a frame
def getBestTrackID(self, position:Position) -> int:
id_list = []
score_list = []
for track in self.tracking_list:
if track.getIsUsed() == False and track.getIsActive() == True:
last = track.last_position()
id_list.append(track.getId())
score_list.append(position.score(last))
#print(score_list[-1])
track.setIsUsed(True)
if(len(id_list) == 0):
return 0
if(min(score_list) >= 15):
return 0
#print("----get best track----")
#print(id_list)
#print(score_list)
#print("----end get best track----")
index = argmin(score_list)
return id_list[index]
# based on the detect from detection.py
def track(save_img=False):
source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
('rtsp://', 'rtmp://', 'http://'))
# Directories
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Initialize
set_logging()
device = select_device(opt.device)
half = device.type != 'cpu' # half precision only supported on CUDA
#Tracking structure
track_list = []
tracking_struct = Tracking(track_list)
counter = 0
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(imgsz, s=stride) # check img_size
if half:
model.half() # to FP16
# Second-stage classifier
classify = False
if classify:
modelc = load_classifier(name='resnet101', n=2) # initialize
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
# Set Dataloader
vid_path, vid_writer = None, None
if webcam:
view_img = check_imshow()
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz, stride=stride)
else:
save_img = True
dataset = LoadImages(source, img_size=imgsz, stride=stride)
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
# Run inference
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
t0 = time.time()
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = time_synchronized()
pred = model(img, augment=opt.augment)[0]
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
t2 = time_synchronized()
# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
# Process detections
for i, det in enumerate(pred): # detections per image
if webcam: # batch_size >= 1
p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
else:
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # img.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
s += '%gx%g ' % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
for *xyxy, conf, cls in reversed(det):
# Tracking code
# get corners of the bonding box
x1, y1, x2, y2 = int(xyxy[0]), int(xyxy[1]), int(xyxy[2]), int(xyxy[3])
# find x center
x = int(x1 + (x2 - x1)/2)
# find y center
y = int(y1 + (y2 - y1)/2)
# create position with center values
pos = Position(x, y)
# find best track based on the position
track_id = tracking_struct.getBestTrackID(pos)
# empty color
color = []
# null color
track = None
# if no track were found
if (track_id == 0):
# increase counter
counter += 1
# randomize color
color = [random.randint(0, 255) for _ in range(3)]
# empty new list of positon
list_position = []
# create new track
new_track = Track(color, counter, True, list_position)
# add postion to track
new_track.add_position(pos)
# add track to track list
tracking_struct.add_track(new_track)
# point track to new track
track = new_track
# if a track was found
else:
# find track
track = tracking_struct.getTrack(track_id)
# get color
color = track.getColor()
# add position
track.add_position(pos)
# reset the step
track.reset_step()
# used for this frame
track.setIsUsed(True)
# get all the point of the track (new of found)
position_track_list = track.getPositionList()
# if more than 2 positon, then draw lines
if (len(position_track_list) >= 2) :
# for each position present in position list of the track
for i in range(len(position_track_list) - 1):
# initial point
initial = position_track_list[i]
# final point
final = position_track_list[i+1]
# draw line from initial to final point on the frame
plot_line((initial.x, initial.y), (final.x, final.y), im0, color, 1)
if save_img or view_img: # Add bbox to image
# save image to video
label = f'{names[int(cls)]} {conf:.2f}'
plot_one_box_and_dot(xyxy, (x, y), im0, track_id, color, label=label, line_thickness=3)
# reset all the track in track list
tracking_struct.reset_tracks()
# increase step in all track to find inactive
tracking_struct.increase_step_all_track()
# Print time (inference + NMS)
print(f'{s}Done. ({t2 - t1:.3f}s)') # remove to see prints
# Stream results
if view_img:
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
# Save results (image with detections)
if save_img:
if dataset.mode == 'image':
cv2.imwrite(save_path, im0)
else: # 'video'
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
fourcc = 'mp4v' # output video codec
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
vid_writer.write(im0)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
print(f"Results saved to {save_dir}{s}")
print(f'Done. ({time.time() - t0:.3f}s)')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
parser.add_argument('--source', type=str, default='data/images', help='source') # file/folder, 0 for webcam
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default='runs/track', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
opt = parser.parse_args()
check_requirements()
with torch.no_grad():
if opt.update: # update all models (to fix SourceChangeWarning)
for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
track()
strip_optimizer(opt.weights)
else:
track()