-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtiming.R
77 lines (61 loc) · 1.97 KB
/
timing.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
library(dplyr)
library(data.table)
set.seed(123)
n = 5e7
k = 5e5
x = runif(n)
grp = sample(k, n, TRUE)
timing = list()
# sapply
timing[["sapply"]] = system.time({
lt = split(x, grp)
r.sapply = sapply(lt, function(x) list(sum(x), length(x)), simplify = FALSE)
})
# lapply
timing[["lapply"]] = system.time({
lt = split(x, grp)
r.lapply = lapply(lt, function(x) list(sum(x), length(x)))
})
# tapply
timing[["tapply"]] = system.time(
r.tapply <- tapply(x, list(grp), function(x) list(sum(x), length(x)))
)
# by
timing[["by"]] = system.time(
r.by <- by(x, list(grp), function(x) list(sum(x), length(x)), simplify = FALSE)
)
# aggregate
timing[["aggregate"]] = system.time(
r.aggregate <- aggregate(x, list(grp), function(x) list(sum(x), length(x)), simplify = FALSE)
)
# dplyr
timing[["dplyr"]] = system.time({
df = data_frame(x, grp)
r.dplyr = summarise(group_by(df, grp), sum(x), n())
})
# system.time({
# df = data_frame(x, grp)
# r.plyr = ddply(df, grp, summarise, sumx=sum(x), n=n(x))
# })
# df = data_frame(x, grp) %>% group_by(grp)
# timing[["dplyr2"]] = system.time({
# r.dplyr = summarise(df, sum(x), n())
# })
# multidplyr
library(multidplyr)
df = partition(data_frame(x, grp), grp) # takes a long time
timing[['multidplyr']] = system.time({
summarise(df, sumx=sum(x), n=n())
})
# data.table
timing[["data.table"]] = system.time({
dt = setnames(setDT(list(x, grp)), c("x","grp"))
r.data.table = dt[, .(sum(x), .N), grp]
})
# all output size match to group count
sapply(list(sapply=r.sapply, lapply=r.lapply, tapply=r.tapply, by=r.by, aggregate=r.aggregate, dplyr=r.dplyr, data.table=r.data.table),
function(x) (if(is.data.frame(x)) nrow else length)(x)==k)
# sapply lapply tapply by aggregate dplyr data.table
# TRUE TRUE TRUE TRUE TRUE TRUE TRUE
as.data.table(sapply(timing, `[[`, "elapsed"), keep.rownames = TRUE)[,.(fun = V1, elapsed = V2)][order(-elapsed)]
save(timing, file='timing.RData')