forked from replicate/cog-stable-diffusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
126 lines (111 loc) · 4.1 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
from typing import List
import torch
from diffusers import (
DiffusionPipeline,
StableDiffusionImg2ImgPipeline,
PNDMScheduler,
LMSDiscreteScheduler,
DDIMScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
)
from PIL import Image
from cog import BasePredictor, Input, Path
MODEL_ID = "stabilityai/stable-diffusion-2"
MODEL_CACHE = "diffusers-cache"
class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
print("Loading pipeline...")
self.txt2img_pipe = DiffusionPipeline.from_pretrained(
MODEL_ID,
cache_dir=MODEL_CACHE,
local_files_only=True,
).to("cuda")
@torch.inference_mode()
@torch.cuda.amp.autocast()
def predict(
self,
prompt: str = Input(
description="Input prompt",
default="a photo of an astronaut riding a horse on mars",
),
negative_prompt: str = Input(
description="Specify things to not see in the output",
default=None,
),
width: int = Input(
description="Width of output image. Maximum size is 1024x768 or 768x1024 because of memory limits",
choices=[128, 256, 384, 448, 512, 576, 640, 704, 768, 832, 896, 960, 1024],
default=768,
),
height: int = Input(
description="Height of output image. Maximum size is 1024x768 or 768x1024 because of memory limits",
choices=[128, 256, 384, 448, 512, 576, 640, 704, 768, 832, 896, 960, 1024],
default=768,
),
prompt_strength: float = Input(
description="Prompt strength when using init image. 1.0 corresponds to full destruction of information in init image",
default=0.8,
),
num_outputs: int = Input(
description="Number of images to output.",
ge=1,
le=4,
default=1,
),
num_inference_steps: int = Input(
description="Number of denoising steps", ge=1, le=500, default=50
),
guidance_scale: float = Input(
description="Scale for classifier-free guidance", ge=1, le=20, default=7.5
),
scheduler: str = Input(
default="K_EULER",
choices=[
"DDIM",
"K_EULER",
"DPMSolverMultistep",
],
description="Choose a scheduler",
),
seed: int = Input(
description="Random seed. Leave blank to randomize the seed", default=None
),
) -> List[Path]:
"""Run a single prediction on the model"""
if seed is None:
seed = int.from_bytes(os.urandom(2), "big")
print(f"Using seed: {seed}")
if width * height > 786432:
raise ValueError(
"Maximum size is 1024x768 or 768x1024 pixels, because of memory limits. Please select a lower width or height."
)
pipe = self.txt2img_pipe
pipe.scheduler = make_scheduler(scheduler, pipe.scheduler.config)
generator = torch.Generator("cuda").manual_seed(seed)
output = pipe(
prompt=[prompt] * num_outputs if prompt is not None else None,
negative_prompt=[negative_prompt] * num_outputs
if negative_prompt is not None
else None,
width=width,
height=height,
guidance_scale=guidance_scale,
generator=generator,
num_inference_steps=num_inference_steps,
)
output_paths = []
for i, sample in enumerate(output.images):
output_path = f"/tmp/out-{i}.png"
sample.save(output_path)
output_paths.append(Path(output_path))
return output_paths
def make_scheduler(name, config):
return {
"DDIM": DDIMScheduler.from_config(config),
"K_EULER": EulerDiscreteScheduler.from_config(config),
"DPMSolverMultistep": DPMSolverMultistepScheduler.from_config(config),
}[name]