-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassify.py
34 lines (25 loc) · 994 Bytes
/
classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#!/usr/bin/python3
from tensorflow import keras
from glob import glob
import numpy as np
def load_data(filename_filter: str):
data = []
for data_name in glob(filename_filter):
loaded = np.uint8(np.load(data_name, allow_pickle=False))
data.append(loaded)
return np.stack(data)
def classify(model, data) -> (int, float):
average_classification = np.average(np.stack(model.predict(data)), axis=0)
result = np.argmax(average_classification)
certainty = average_classification[result]
return int(result), certainty
if __name__ == '__main__':
import pickle
model = keras.models.load_model('model')
with open('names', 'rb') as f:
name_lookup, reverse_name_lookup = pickle.load(f)
for i in range(12):
data = load_data(f'/run/media/matz/SD 32GB/VideoChopper/out_{i + 1}_*.npy')
label, certainty = classify(model, data)
name = name_lookup[label]
print(f'{i+1}: {name} ({certainty * 100:.1f}%)')