forked from zhaipro/easy12306
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
60 lines (50 loc) · 1.51 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# coding: utf-8
import sys
import cv2
import numpy as np
from keras import models
import pretreatment
from mlearn_for_image import preprocess_input
def get_text(img, offset=0):
text = pretreatment.get_text(img, offset)
text = cv2.cvtColor(text, cv2.COLOR_BGR2GRAY)
text = text / 255.0
h, w = text.shape
text.shape = (1, h, w, 1)
return text
def main(fn):
# 读取并预处理验证码
img = cv2.imread(fn)
text = get_text(img)
imgs = np.array(list(pretreatment._get_imgs(img)))
imgs = preprocess_input(imgs)
# 识别文字
model = models.load_model('model.h5')
label = model.predict(text)
label = label.argmax()
fp = open('texts.txt', encoding='utf-8')
texts = [text.rstrip('\n') for text in fp]
text = texts[label]
print(text)
# 获取下一个词
# 根据第一个词的长度来定位第二个词的位置
if len(text) == 1:
offset = 27
elif len(text) == 2:
offset = 47
else:
offset = 60
text = get_text(img, offset=offset)
if text.mean() < 0.95:
label = model.predict(text)
label = label.argmax()
text = texts[label]
print(text)
# 加载图片分类器
model = models.load_model('12306.image.model.h5')
labels = model.predict(imgs)
labels = labels.argmax(axis=1)
for pos, label in enumerate(labels):
print(pos // 4, pos % 4, texts[label])
if __name__ == '__main__':
main(sys.argv[1])