-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathlabelme2coco.py
169 lines (134 loc) · 6.12 KB
/
labelme2coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
import sys
import glob
import json
import shutil
import argparse
import numpy as np
from tqdm import tqdm
from labelme import utils
from sklearn.model_selection import train_test_split
class Labelme2coco():
def __init__(self, args):
self.classname_to_id = {args.class_name: 1}
self.images = []
self.annotations = []
self.categories = []
self.ann_id = 0
def save_coco_json(self, instance, save_path):
json.dump(instance, open(save_path, 'w', encoding='utf-8'), ensure_ascii=False, indent=1)
def read_jsonfile(self, path):
with open(path, "r", encoding='utf-8') as f:
return json.load(f)
def _get_box(self, points):
min_x = min_y = np.inf
max_x = max_y = 0
for x, y in points:
min_x = min(min_x, x)
min_y = min(min_y, y)
max_x = max(max_x, x)
max_y = max(max_y, y)
return [min_x, min_y, max_x - min_x, max_y - min_y]
def _get_keypoints(self, points, keypoints, num_keypoints):
if points[0] == 0 and points[1] == 0:
visable = 0
else:
visable = 2
num_keypoints += 1
keypoints.extend([points[0], points[1], visable])
return keypoints, num_keypoints
def _image(self, obj, path):
image = {}
img_x = utils.img_b64_to_arr(obj['imageData'])
image['height'], image['width'] = img_x.shape[:-1]
self.img_id = int(os.path.basename(path).split(".json")[0])
image['id'] = self.img_id
image['file_name'] = os.path.basename(path).replace(".json", ".jpg")
return image
def _annotation(self, bboxes_list, keypoints_list, json_path):
if len(keypoints_list) != args.join_num * len(bboxes_list):
print('you loss {} keypoint(s) with file {}'.format(args.join_num * len(bboxes_list) - len(keypoints_list), json_path))
print('Please check !!!')
sys.exit()
i = 0
for object in bboxes_list:
annotation = {}
keypoints = []
num_keypoints = 0
label = object['label']
bbox = object['points']
annotation['id'] = self.ann_id
annotation['image_id'] = self.img_id
annotation['category_id'] = int(self.classname_to_id[label])
annotation['iscrowd'] = 0
annotation['area'] = 1.0
annotation['segmentation'] = [np.asarray(bbox).flatten().tolist()]
annotation['bbox'] = self._get_box(bbox)
for keypoint in keypoints_list[i * args.join_num: (i + 1) * args.join_num]:
point = keypoint['points']
annotation['keypoints'], num_keypoints = self._get_keypoints(point[0], keypoints, num_keypoints)
annotation['num_keypoints'] = num_keypoints
i += 1
self.ann_id += 1
self.annotations.append(annotation)
def _init_categories(self):
for name, id in self.classname_to_id.items():
category = {}
category['supercategory'] = name
category['id'] = id
category['name'] = name
category['keypoint'] = ['left_top', 'right_top', 'right_bottom', 'left_bottom']
# category['keypoint'] = [str(i + 1) for i in range(args.join_num)]
self.categories.append(category)
def to_coco(self, json_path_list):
self._init_categories()
for json_path in tqdm(json_path_list):
obj = self.read_jsonfile(json_path)
self.images.append(self._image(obj, json_path))
shapes = obj['shapes']
bboxes_list, keypoints_list = [], []
for shape in shapes:
if shape['shape_type'] == 'rectangle':
bboxes_list.append(shape)
elif shape['shape_type'] == 'point':
keypoints_list.append(shape)
self._annotation(bboxes_list, keypoints_list, json_path)
keypoints = {}
keypoints['info'] = {'description': 'Monitor Dataset', 'version': 1.0, 'year': 2020}
keypoints['license'] = ['Acer']
keypoints['images'] = self.images
keypoints['annotations'] = self.annotations
keypoints['categories'] = self.categories
return keypoints
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--class_name", "--n", help="class name", type=str, required=True)
parser.add_argument("--input", "--i", help="json file path (labelme)", type=str, required=True)
parser.add_argument("--output", "--o", help="output file path (coco format)", type=str, required=True)
parser.add_argument("--join_num", "--j", help="number of join", type=int, required=True)
parser.add_argument("--ratio", "--r", help="train and test split ratio", type=float, default=0.12)
args = parser.parse_args()
labelme_path = args.input
saved_coco_path = args.output
if not os.path.exists("%scoco/annotations/"%saved_coco_path):
os.makedirs("%scoco/annotations/"%saved_coco_path)
if not os.path.exists("%scoco/train/"%saved_coco_path):
os.makedirs("%scoco/train"%saved_coco_path)
if not os.path.exists("%scoco/val/"%saved_coco_path):
os.makedirs("%scoco/val"%saved_coco_path)
json_list_path = glob.glob(labelme_path + "/*.json")
train_path, val_path = train_test_split(json_list_path, test_size=args.ratio)
print('{} for training'.format(len(train_path)),
'\n{} for testing'.format(len(val_path)))
print('Start transform please wait ...')
l2c_train = Labelme2coco(args)
train_keypoints = l2c_train.to_coco(train_path)
l2c_train.save_coco_json(train_keypoints, '%scoco/annotations/keypoints_train.json' % saved_coco_path)
for file in train_path:
shutil.copy(file.replace("json", "jpg"), "%scoco/train/" % saved_coco_path)
for file in val_path:
shutil.copy(file.replace("json", "jpg"), "%scoco/val/" % saved_coco_path)
#
l2c_val = Labelme2coco(args)
val_instance = l2c_val.to_coco(val_path)
l2c_val.save_coco_json(val_instance, '%scoco/annotations/keypoints_val.json' % saved_coco_path)