-
Notifications
You must be signed in to change notification settings - Fork 28
/
NeuralPull.py
465 lines (391 loc) · 17.3 KB
/
NeuralPull.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
# -*- coding: utf-8 -*-
"""
Created on Thu Jul 23 16:44:22 2020
@author: Administrator
"""
import numpy as np
import tensorflow as tf
import os
import shutil
import random
import math
import scipy.io as sio
import time
from skimage import measure
import binvox_rw
import argparse
import trimesh
from im2mesh.utils import libmcubes
from im2mesh.utils.libkdtree import KDTree
import re
parser = argparse.ArgumentParser()
parser.add_argument('--train',action='store_true', default=False)
parser.add_argument('--data_dir', type=str, required=True)
parser.add_argument('--out_dir', type=str, required=True)
parser.add_argument('--class_idx', type=str, default="026911156")
parser.add_argument('--save_idx', type=int, default=-1)
parser.add_argument('--CUDA', type=int, default=0)
parser.add_argument('--dataset', type=str, default="shapenet")
a = parser.parse_args()
cuda_idx = str(a.CUDA)
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]= cuda_idx
BS = 1
POINT_NUM = 5000
POINT_NUM_GT = 20000
INPUT_DIR = a.data_dir
#INPUT_DIR = '/home/mabaorui/AtlasNetOwn/data/sphere/'
OUTPUT_DIR = a.out_dir
if(a.dataset=="shapenet"):
GT_DIR = './data/ShapeNet_GT/' + a.class_idx + '/'
if(a.dataset=="famous"):
GT_DIR = './data/famous_noisefree/03_meshes/'
if(a.dataset=="ABC"):
GT_DIR = './data/abc_noisefree/03_meshes/'
TRAIN = a.train
bd = 0.55
if(TRAIN):
if os.path.exists(OUTPUT_DIR):
shutil.rmtree(OUTPUT_DIR)
print ('test_res_dir: deleted and then created!')
os.makedirs(OUTPUT_DIR)
def distance_p2p(points_src, normals_src, points_tgt, normals_tgt):
''' Computes minimal distances of each point in points_src to points_tgt.
Args:
points_src (numpy array): source points
normals_src (numpy array): source normals
points_tgt (numpy array): target points
normals_tgt (numpy array): target normals
'''
kdtree = KDTree(points_tgt)
dist, idx = kdtree.query(points_src)
if normals_src is not None and normals_tgt is not None:
normals_src = \
normals_src / np.linalg.norm(normals_src, axis=-1, keepdims=True)
normals_tgt = \
normals_tgt / np.linalg.norm(normals_tgt, axis=-1, keepdims=True)
# normals_dot_product = (normals_tgt[idx] * normals_src).sum(axis=-1)
# # Handle normals that point into wrong direction gracefully
# # (mostly due to mehtod not caring about this in generation)
# normals_dot_product = np.abs(normals_dot_product)
normals_dot_product = np.abs(normals_tgt[idx] * normals_src)
normals_dot_product = normals_dot_product.sum(axis=-1)
else:
normals_dot_product = np.array(
[np.nan] * points_src.shape[0], dtype=np.float32)
return dist, normals_dot_product
def eval_pointcloud(pointcloud, pointcloud_tgt,
normals=None, normals_tgt=None):
''' Evaluates a point cloud.
Args:
pointcloud (numpy array): predicted point cloud
pointcloud_tgt (numpy array): target point cloud
normals (numpy array): predicted normals
normals_tgt (numpy array): target normals
'''
# Return maximum losses if pointcloud is empty
pointcloud = np.asarray(pointcloud)
pointcloud_tgt = np.asarray(pointcloud_tgt)
# Completeness: how far are the points of the target point cloud
# from thre predicted point cloud
completeness, completeness_normals = distance_p2p(
pointcloud_tgt, normals_tgt, pointcloud, normals
)
completeness2 = completeness**2
completeness = completeness.mean()
completeness2 = completeness2.mean()
completeness_normals = completeness_normals.mean()
# Accuracy: how far are th points of the predicted pointcloud
# from the target pointcloud
accuracy, accuracy_normals = distance_p2p(
pointcloud, normals, pointcloud_tgt, normals_tgt
)
accuracy2 = accuracy**2
accuracy = accuracy.mean()
accuracy2 = accuracy2.mean()
accuracy_normals = accuracy_normals.mean()
#print(completeness,accuracy,completeness2,accuracy2)
# Chamfer distance
chamferL2 = 0.5 * (completeness2 + accuracy2)
print('chamferL2:',chamferL2)
normals_correctness = (
0.5 * completeness_normals + 0.5 * accuracy_normals
)
chamferL1 = 0.5 * (completeness + accuracy)
print('normals_correctness:',normals_correctness,'chamferL1:',chamferL1)
return normals_correctness, chamferL1, chamferL2
def safe_norm_np(x, epsilon=1e-12, axis=1):
return np.sqrt(np.sum(x*x, axis=axis) + epsilon)
def safe_norm(x, epsilon=1e-12, axis=None):
return tf.sqrt(tf.reduce_sum(x ** 2, axis=axis) + epsilon)
def boundingbox(x,y,z):
return min(x),max(x),min(y),max(y),min(z),max(z)
def chamfer_distance_tf_None(array1, array2):
array1 = tf.reshape(array1,[-1,3])
array2 = tf.reshape(array2,[-1,3])
av_dist1 = av_dist_None(array1, array2)
av_dist2 = av_dist_None(array2, array1)
return av_dist1+av_dist2
def distance_matrix_None(array1, array2, num_point, num_features = 3):
"""
arguments:
array1: the array, size: (num_point, num_feature)
array2: the samples, size: (num_point, num_feature)
returns:
distances: each entry is the distance from a sample to array1
, it's size: (num_point, num_point)
"""
expanded_array1 = tf.tile(array1, (num_point, 1))
expanded_array2 = tf.reshape(
tf.tile(tf.expand_dims(array2, 1),
(1, num_point, 1)),
(-1, num_features))
distances = tf.norm(expanded_array1-expanded_array2, axis=1)
distances = tf.reshape(distances, (num_point, num_point))
return distances
def av_dist_None(array1, array2):
"""
arguments:
array1, array2: both size: (num_points, num_feature)
returns:
distances: size: (1,)
"""
distances = distance_matrix_None(array1, array2,points_input_num[0,0])
distances = tf.reduce_min(distances, axis=1)
distances = tf.reduce_mean(distances)
return distances
files = []
files_path = []
if(a.dataset == "shapenet"):
f = open('./data/shapenet_val.txt','r')
for index,line in enumerate(f):
if(line.strip().split('/')[0]==a.class_idx):
#print(line)
files.append(line.strip().split('/')[1])
f.close()
if(a.dataset == "famous"):
f = open('./data/famous_testset.txt','r')
for index,line in enumerate(f):
#print(line)
files.append(line.strip('\n'))
f.close()
if(a.dataset == "ABC" or a.dataset == "other"):
fileAll = os.listdir(INPUT_DIR)
for file in fileAll:
if(re.findall(r'.*.npz', file, flags=0)):
print(file.strip().split('.')[0])
files.append(file.strip().split('.')[0])
for file in files:
files_path.append(INPUT_DIR + file + '.npz')
SHAPE_NUM = len(files_path)
print('SHAPE_NUM:',SHAPE_NUM)
pointclouds = []
samples = []
mm = 0
if(TRAIN):
for file in files_path:
# if(mm>10):
# break
# mm = mm + 1
#print(INPUT_DIR + file + '.npz')
load_data = np.load(file)
#print(load_data['sample_near'].shape)
point = np.asarray(load_data['sample_near']).reshape(-1,POINT_NUM,3)
sample = np.asarray(load_data['sample']).reshape(-1,POINT_NUM,3)
pointclouds.append(point)
samples.append(sample)
pointclouds = np.asarray(pointclouds)
samples = np.asarray(samples)
print('data shape:',pointclouds.shape,samples.shape)
feature = tf.placeholder(tf.float32, shape=[BS,None,SHAPE_NUM])
points_target = tf.placeholder(tf.float32, shape=[BS,None,3])
input_points_3d = tf.placeholder(tf.float32, shape=[BS, None,3])
points_target_num = tf.placeholder(tf.int32, shape=[1,1])
points_input_num = tf.placeholder(tf.int32, shape=[1,1])
feature_f = tf.nn.relu(tf.layers.dense(feature,128))
net = tf.nn.relu(tf.layers.dense(input_points_3d, 512))
net = tf.concat([net,feature_f],2)
print('net:',net)
with tf.variable_scope('decoder', reuse=tf.AUTO_REUSE):
for i in range(8):
with tf.variable_scope("resnetBlockFC_%d" % i ):
b_initializer=tf.constant_initializer(0.0)
w_initializer = tf.random_normal_initializer(mean=0.0,stddev=np.sqrt(2) / np.sqrt(512))
net = tf.layers.dense(tf.nn.relu(net),512,kernel_initializer=w_initializer,bias_initializer=b_initializer)
b_initializer=tf.constant_initializer(-0.5)
w_initializer = tf.random_normal_initializer(mean=2*np.sqrt(np.pi) / np.sqrt(512), stddev = 0.000001)
print('net:',net)
sdf = tf.layers.dense(tf.nn.relu(net),1,kernel_initializer=w_initializer,bias_initializer=b_initializer)
print('sdf',sdf)
grad = tf.gradients(ys=sdf, xs=input_points_3d)
print('grad',grad)
print(grad[0])
normal_p_lenght = tf.expand_dims(safe_norm(grad[0],axis = -1),-1)
print('normal_p_lenght',normal_p_lenght)
grad_norm = grad[0]/normal_p_lenght
print('grad_norm',grad_norm)
g_points = input_points_3d - sdf * grad_norm
#loss = tf.losses.huber_loss(points_target, g_points)
#loss = chamfer_distance_tf_None(point_target_near, g_points)
#loss = chamfer_distance_tf_None(points_target, g_points)
l2_loss = tf.norm((points_target-g_points), axis=-1)
print('l2_loss:',l2_loss)
loss = tf.reduce_mean(l2_loss)
t_vars = tf.trainable_variables()
optim = tf.train.AdamOptimizer(learning_rate=0.0001, beta1=0.9)
loss_grads_and_vars = optim.compute_gradients(loss, var_list=t_vars)
loss_optim = optim.apply_gradients(loss_grads_and_vars)
config = tf.ConfigProto(allow_soft_placement=False)
saver_restore = tf.train.Saver(var_list=t_vars)
saver = tf.train.Saver(max_to_keep=2000000)
with tf.Session(config=config) as sess:
feature_bs = []
for i in range(SHAPE_NUM):
tt = []
for j in range(int(POINT_NUM)):
t = np.zeros(SHAPE_NUM)
t[i] = 1
tt.append(t)
feature_bs.append(tt)
feature_bs = np.asarray(feature_bs)
if(TRAIN):
print('train start')
sess.run(tf.global_variables_initializer())
start_time = time.time()
POINT_NUM_GT_bs = np.array(POINT_NUM_GT).reshape(1,1)
points_input_num_bs = np.array(POINT_NUM).reshape(1,1)
for i in range(40000):
#start_time = time.time()
epoch_index = np.random.choice(SHAPE_NUM, SHAPE_NUM, replace = False)
#epoch_index = np.random.choice(10, 10, replace = False)
loss_i = 0
for epoch in epoch_index:
rt = random.randint(0,samples.shape[1]-1)
input_points_2d_bs = samples[epoch,rt,:,:].reshape(BS, POINT_NUM, 3)
point_gt = pointclouds[epoch,rt,:,:].reshape(BS,POINT_NUM,3)
feature_bs_t = feature_bs[epoch,:,:].reshape(1,-1,SHAPE_NUM)
_,loss_c = sess.run([loss_optim,loss],feed_dict={input_points_3d:input_points_2d_bs,points_target:point_gt,feature:feature_bs_t,points_target_num:POINT_NUM_GT_bs,points_input_num:points_input_num_bs})
loss_i = loss_i + loss_c
loss_i = loss_i / SHAPE_NUM
if(i%10 == 0):
print('epoch:', i, 'epoch loss:', loss_i)
if(i%500 == 0):
print('save model')
saver.save(sess, os.path.join(OUTPUT_DIR, "model"), global_step=i+1)
end_time = time.time()
print('run_time:',end_time-start_time)
else:
print('test start')
checkpoint = tf.train.get_checkpoint_state(OUTPUT_DIR).all_model_checkpoint_paths
print(checkpoint[a.save_idx])
saver.restore(sess, checkpoint[a.save_idx])
s = np.arange(-bd,bd, (2*bd)/128)
print(s.shape[0])
vox_size = s.shape[0]
POINT_NUM_GT_bs = np.array(vox_size).reshape(1,1)
points_input_num_bs = np.array(POINT_NUM).reshape(1,1)
input_points_2d_bs = []
for i in s:
for j in s:
for k in s:
input_points_2d_bs.append(np.asarray([i,j,k]))
input_points_2d_bs = np.asarray(input_points_2d_bs)
print('input_points_2d_bs',input_points_2d_bs.shape)
input_points_2d_bs = input_points_2d_bs.reshape((vox_size,vox_size,vox_size,3))
POINT_NUM_GT_bs = np.array(vox_size*vox_size).reshape(1,1)
test_num = SHAPE_NUM
#test_num = 4
print('test_num:',test_num)
cd = 0
nc = 0
cd2 = 0
#for epoch in range(20):
for epoch in range(test_num):
print('test:',epoch)
# if(os.path.exists(OUTPUT_DIR + file_test[epoch] + '.npz')):
# print('exit')
# continue
# with open(OUTPUT_DIR + 'gt_' + files[START+epoch] + '.txt'.format(epoch),'w') as f:
# for i in range(pointclouds.shape[1]):
# x = pointclouds[epoch,i,0]
# y = pointclouds[epoch,i,1]
# z = pointclouds[epoch,i,2]
# f.write(str(x)+';')
# f.write(str(y)+';')
# f.write(str(z)+';\n')
vox = []
feature_bs = []
for j in range(vox_size*vox_size):
t = np.zeros(SHAPE_NUM)
t[epoch] = 1
feature_bs.append(t)
feature_bs = np.asarray(feature_bs)
for i in range(vox_size):
input_points_2d_bs_t = input_points_2d_bs[i,:,:,:]
input_points_2d_bs_t = input_points_2d_bs_t.reshape(BS, vox_size*vox_size, 3)
feature_bs_t = feature_bs.reshape(BS,vox_size*vox_size,SHAPE_NUM)
sdf_c = sess.run([sdf],feed_dict={input_points_3d:input_points_2d_bs_t,feature:feature_bs_t,points_target_num:POINT_NUM_GT_bs,points_input_num:points_input_num_bs})
vox.append(sdf_c)
vox = np.asarray(vox)
#print('vox',vox.shape)
vox = vox.reshape((vox_size,vox_size,vox_size))
vox_max = np.max(vox.reshape((-1)))
vox_min = np.min(vox.reshape((-1)))
print('max_min:',vox_max,vox_min)
threshs = [0.005]
for thresh in threshs:
print(np.sum(vox>thresh),np.sum(vox<thresh))
if(np.sum(vox>0.0)<np.sum(vox<0.0)):
thresh = -thresh
print('model:',epoch,'thresh:',thresh)
vertices, triangles = libmcubes.marching_cubes(vox, thresh)
if(vertices.shape[0]<10 or triangles.shape<10):
print('no sur---------------------------------------------')
continue
if(np.sum(vox>0.0)>np.sum(vox<0.0)):
triangles_t = []
for it in range(triangles.shape[0]):
tt = np.array([triangles[it,2],triangles[it,1],triangles[it,0]])
triangles_t.append(tt)
triangles_t = np.asarray(triangles_t)
else:
triangles_t = triangles
triangles_t = np.asarray(triangles_t)
vertices -= 0.5
# Undo padding
vertices -= 1
# Normalize to bounding box
vertices /= np.array([vox_size-1, vox_size-1, vox_size-1])
vertices = 1.1 * (vertices - 0.5)
mesh = trimesh.Trimesh(vertices, triangles_t,
vertex_normals=None,
process=False)
mesh.export(OUTPUT_DIR + '/occn_' + files[epoch] + '_'+ str(thresh) + '.off')
mesh = trimesh.Trimesh(vertices, triangles,
vertex_normals=None,
process=False)
if(a.dataset == 'other'):
continue
if(a.dataset=="shapenet"):
ps, idx = mesh.sample(1000000, return_index=True)
else:
ps, idx = mesh.sample(10000, return_index=True)
ps = ps.astype(np.float32)
normals_pred = mesh.face_normals[idx]
if(a.dataset=="shapenet"):
data = np.load(GT_DIR + files[epoch] + '/pointcloud.npz')
#data = np.load(file_test[epoch])
pointcloud = data['points']
normal = data['normals']
else:
mesh_gt = trimesh.load(GT_DIR + files[epoch] + '.ply')
pointcloud, idx_gt = mesh_gt.sample(10000, return_index=True)
pointcloud = pointcloud.astype(np.float32)
normal = mesh_gt.face_normals[idx_gt]
nc_t,cd_t,cd2_t = eval_pointcloud(ps,pointcloud.astype(np.float32),normals_pred.astype(np.float32),normal.astype(np.float32))
np.savez(OUTPUT_DIR + files[epoch]+ '_'+ str(thresh),pp = ps, np = normals_pred, p = pointcloud, n = normal, nc = nc_t, cd = cd_t, cd2 = cd2_t)
nc = nc + nc_t
cd = cd + cd_t
cd2 = cd2 + cd2_t
#print('mean_nc:',nc/20,'mean_cd:',cd/20,'cd2:',cd2/20)
print('mean_nc:',nc/test_num,'mean_cd:',cd/test_num,'cd2:',cd2/test_num)