-
Notifications
You must be signed in to change notification settings - Fork 3
/
firmware.c
677 lines (535 loc) · 12.4 KB
/
firmware.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
/*
* ZUCKER SOC BOOTLOADER (ZBL)
* Copyright (c) 2021 Lone Dynamics Corporation. All rights reserved.
*
*/
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#define EN_BANNER 1
#define reg_uart_data (*(volatile uint8_t*)0xf0000000)
#define reg_uart_ctrl (*(volatile uint8_t*)0xf0000004)
#define reg_leds (*(volatile uint8_t*)0xf0001000)
#define reg_rtc (*(volatile uint32_t*)0xf0001100)
#define reg_sd (*(volatile uint8_t*)0xf0002000)
#define reg_ps2_data (*(volatile uint8_t*)0xf0003000)
#define reg_ps2_ctrl (*(volatile uint8_t*)0xf0003004)
#define reg_uhh_info (*(volatile uint32_t*)0xf0004000)
#define reg_uhh_keys (*(volatile uint32_t*)0xf0004004)
#define reg_uhh_mouse (*(volatile uint32_t*)0xf0004008)
#define reg_gamepad_l (*(volatile uint32_t*)0xf0005000)
#define reg_gamepad_r (*(volatile uint32_t*)0xf0005004)
#define reg_delay_us (*(volatile uint32_t*)0xf0006000)
#define reg_cfg_sys (*(volatile uint32_t*)0xf000f000)
#define reg_cfg_vid (*(volatile uint32_t*)0xf000f004)
#define reg_cfg_vid_res (*(volatile uint32_t*)0xf000f008)
#define reg_gpu_blit_src (*(volatile uint32_t*)0xf0008000)
#define reg_gpu_blit_dst (*(volatile uint32_t*)0xf0008004)
#define reg_gpu_blit_ctl (*(volatile uint32_t*)0xf0008008)
#define UART_CTRL_TXBUSY 0x02
#define UART_CTRL_DR 0x01
#define PS2_CTRL_OVERFLOW 0x04
#define PS2_CTRL_BUSY 0x02
#define PS2_CTRL_DR 0x01
#define UHH_INFO_DR 0x80000000
#define SD_MISO 0x01
#define SD_MOSI 0x02
#define SD_SCK 0x04
#define SD_SS 0x08
#define MEM_VRAM 0x10000000
#define MEM_SRAM 0x20000000
//#define MEM_SRAM_SIZE 0x20000 // 128KB
//#define MEM_SRAM_SIZE 0x80000 // 512KB
#define MEM_SRAM_SIZE 0x100000 // 1MB
#define MEM_HRAM 0x40000000
//#define MEM_HRAM_SIZE 0x800000 // 8MB
#define MEM_HRAM_SIZE 0x2000000 // 32MB
//#define MEM_HRAM_SIZE 0x4000000 // 64MB
#define MEM_FLASH 0x80000000
#define MEM_FLASH_SIZE 0x2000000 // 32MB
#define LIX_MEM_ADDR 0x40000000
#define LIX_FLASH_ADDR 0x80050000
#define LIX_SIZE 262144
#include "scancodes.h"
#include "hidcodes.h"
uint16_t curs_x = 0;
uint16_t curs_y = 0;
uint32_t addr_ptr;
uint32_t mem_total;
// --------------------------------------------------------
uint32_t xfer_recv(uint32_t addr);
uint32_t crc32b(char *data, uint32_t len);
void putchar_vga(const char c);
char scantoascii(uint8_t scancode);
char hidtoascii(uint8_t code);
void sd_init(void);
void sd_spi_xfer(uint8_t b);
void sd_delay(void);
void print_hex(uint32_t v, int digits);
void memtest(uint32_t addr_ptr, uint32_t mem_total);
void memcpy(uint32_t dest, uint32_t src, uint32_t n);
int vid_cols;
int vid_rows;
int vid_hres;
int vid_vres;
// --------------------------------------------------------
int putchar(int c)
{
while ((reg_uart_ctrl & UART_CTRL_TXBUSY) == UART_CTRL_TXBUSY);
if (c == '\n')
putchar('\r');
reg_uart_data = (char)c;
if (reg_cfg_vid)
putchar_vga(c);
return c;
}
void print(const char *p)
{
while (*p)
putchar(*(p++));
}
void putchar_vga(const char c) {
int xy = curs_y * vid_cols + curs_x;
if (c == '\n') {
curs_x = 0;
curs_y++;
} else {
(*(volatile uint8_t *)(0x10000000 + xy)) = c;
curs_x++;
for (int i = curs_x; i < vid_cols - curs_x + 1; i++)
(*(volatile uint8_t *)(0x10000000 + xy + i)) = ' ';
}
if (curs_x >= vid_cols) { curs_x = 0; curs_y++; };
if (curs_y > vid_rows - 1) {
curs_y = vid_rows - 1;
memcpy(0x10000000, 0x10000000 + vid_cols,
(vid_cols * vid_rows) - vid_cols);
};
}
int getchar()
{
int uart_dr = ((reg_uart_ctrl & UART_CTRL_DR) == UART_CTRL_DR);
int kbd_dr = ((reg_ps2_ctrl & PS2_CTRL_DR) == PS2_CTRL_DR);
int uhh_dr = ((reg_uhh_info & UHH_INFO_DR) == UHH_INFO_DR);
char c;
if (!uart_dr && !kbd_dr && !uhh_dr) {
return EOF;
} else {
if (kbd_dr) {
c = scantoascii(reg_ps2_data);
if (c) return c; else return EOF;
} else if (uhh_dr) {
uint32_t keys = reg_uhh_keys;
uint8_t key = (keys >> 24) & 0xff;
if (!key) return EOF;
uint8_t c = hidtoascii(key);
if (c) return c; else return EOF;
} else {
return reg_uart_data;
}
}
}
void getchars(char *buf, int len) {
int c;
for (int i = 0; i < len; i++) {
while ((c = getchar()) == EOF);
buf[i] = (char)c;
};
}
char scantoascii(uint8_t scancode) {
uint8_t tmp;
if (scancode == 0xf0) {
while ((reg_ps2_ctrl & PS2_CTRL_DR) != PS2_CTRL_DR);
tmp = reg_ps2_data;
return tmp * 0;
}
for (int i = 0; i < sizeof(ps2_scancodes); i++) {
if (ps2_scancodes[i] == scancode) return i + 0x30;
}
return 0;
};
char hidtoascii(uint8_t scancode) {
for (int i = 0; i < sizeof(hid_codes); i++) {
if (hid_codes[i] == scancode) return i + 0x30;
}
return 0;
};
uint32_t xfer_recv(uint32_t addr_ptr)
{
uint32_t addr = addr_ptr;
uint32_t bytes = 0;
uint32_t crc_ours;
uint32_t crc_theirs;
char buf_data[252];
char buf_crc[4];
int cmd;
int datasize;
print("xfer addr 0x");
print_hex(addr, 8);
print("\n");
while (1) {
while ((cmd = getchar()) == EOF);
buf_data[0] = (uint8_t)cmd;
if ((char)cmd == 'L') {
while ((datasize = getchar()) == EOF);
buf_data[1] = (uint8_t)datasize;
getchars(&buf_data[2], datasize);
getchars(buf_crc, 4);
crc_ours = crc32b(buf_data, datasize + 2);
crc_theirs = buf_crc[0] | (buf_crc[1] << 8) |
(buf_crc[2] << 16) | (buf_crc[3] << 24);
if (crc_ours == crc_theirs) {
for (int i = 0; i < datasize; i++) {
(*(volatile uint8_t *)(addr + i)) = buf_data[2 + i];
}
addr += datasize;
bytes += datasize;
putchar('A');
} else {
putchar('N');
}
}
if ((char)cmd == 'D') {
break;
}
}
return bytes;
}
uint32_t crc32b(char *data, uint32_t len) {
uint32_t byte, crc, mask;
crc = 0xffffffff;
for (int i = 0; i < len; i++) {
byte = data[i];
crc = crc ^ byte;
for (int j = 7; j >= 0; j--) {
mask = -(crc & 1);
crc = (crc >> 1) ^ (0xedb88320 & mask);
}
i = i + 1;
}
return ~crc;
}
/*
// put any SD card into SPI mode or it will cause problems on the SPI bus
void sd_init(void) {
print("init sdcard to spi mode ... ");
reg_sd = SD_SS | SD_MOSI;
// dummy clocks
for (int i = 0; i < 10; i++) {
sd_spi_xfer(0xff);
}
reg_sd = 0x00; // SS low
sd_delay();
sd_spi_xfer(0x40);
sd_spi_xfer(0x00);
sd_spi_xfer(0x00);
sd_spi_xfer(0x00);
sd_spi_xfer(0x00);
sd_spi_xfer(0x95);
reg_sd = SD_MOSI;
print("got: ");
for (int z = 0; z < 10; z++) {
for (int i = 0; i < 50; i++) {
if ((reg_sd & SD_MISO) == SD_MISO) print("1"); else print("0");
reg_sd |= SD_SCK;
sd_delay();
reg_sd &= ~SD_SCK;
sd_delay();
}
print("\n");
sd_delay();
sd_delay();
sd_delay();
}
// print("done\n");
}
void sd_spi_xfer(uint8_t b) {
for (int i = 7; i >= 0; i--) {
if ((b >> i) & 0x01) reg_sd = SD_MOSI; else reg_sd = 0x00;
if ((b >> i) & 0x01) print("1"); else print("0");
reg_sd |= SD_SCK;
sd_delay();
reg_sd &= ~SD_SCK;
sd_delay();
}
print("\n");
}
void sd_delay(void) {
uint32_t x, y;
for (x = 0; x < 100000; x++) y += x * 2;
}
*/
void cmd_echo() {
int c;
while (1) {
if ((c = getchar()) != EOF) {
if ((char)c == '0') return;
putchar(c);
}
}
}
void cmd_info() {
uint8_t tmp;
uint32_t tmp32;
print("clk: 0x");
print_hex(reg_cfg_sys & 0xff, 2);
print("MHz ");
print("vid_en: 0x");
print_hex((reg_cfg_vid & 0x80000000) == 0x80000000, 2);
print(" ");
print("cols: 0x");
print_hex(vid_cols, 2);
print(" ");
print("rows: 0x");
print_hex(vid_rows, 2);
print(" ");
print("hres: 0x");
print_hex(vid_hres, 4);
print(" ");
print("vres: 0x");
print_hex(vid_vres, 4);
print("\n");
print("leds: 0x");
tmp = reg_leds;
print_hex(tmp, 2);
print(" ");
print("uhh info: 0x");
print_hex(reg_uhh_info, 8);
print(" ");
print("uhh keys: 0x");
print_hex(reg_uhh_keys, 8);
print(" ");
print("uhh mouse: 0x");
print_hex(reg_uhh_mouse, 8);
print("\n");
print("uptime: 0x");
tmp32 = reg_rtc;
print_hex(tmp32, 8);
print("\n");
}
void ps2_wait() {
while ((reg_ps2_ctrl & PS2_CTRL_BUSY) == PS2_CTRL_BUSY);
}
void ps2_read() {
uint8_t tmp;
if ((reg_ps2_ctrl & PS2_CTRL_DR) == PS2_CTRL_DR) {
print("ps2_ctrl: ");
tmp = reg_ps2_ctrl;
print_hex(tmp, 2);
print(" ps2_dat: ");
tmp = reg_ps2_data;
print_hex(tmp, 2);
print(" ");
putchar(scantoascii(tmp));
print("\n");
}
}
void cmd_dump_bytes() {
uint32_t addr = addr_ptr;
uint8_t tmp;
for (int i = 0; i < 16; i++) {
print_hex(addr, 8);
print(" ");
for (int x = 0; x < 16; x++) {
tmp = (*(volatile uint8_t *)addr);
print_hex(tmp, 2);
print(" ");
addr += 1;
}
print("\n");
}
}
void cmd_dump_words() {
uint32_t addr = addr_ptr;
uint32_t tmp;
for (int i = 0; i < 16; i++) {
print_hex(addr, 8);
print(" ");
for (int x = 0; x < 4; x++) {
tmp = (*(volatile uint32_t *)addr);
print_hex(tmp, 8);
print(" ");
addr += 4;
}
print("\n");
}
}
void cmd_memzero()
{
print("zeroing ... ");
volatile uint32_t *addr = (uint32_t *)addr_ptr;
for (int i = 0; i < (mem_total / sizeof(int)); i++) {
(*(volatile uint32_t *)(addr + i)) = 0x00000000;
}
print("done.\n");
}
void memcpy(uint32_t dest, uint32_t src, uint32_t n) {
volatile uint32_t *from = (uint32_t *)src;
volatile uint32_t *to = (uint32_t *)dest;
for (int i = 0; i < (n / sizeof(uint32_t)); i++) {
(*(volatile uint32_t *)(to + i)) = *(from + i);
}
}
//
// --------------------------------------------------------
void cmd_sleep() {
for (int i = 0; i < 1000000; i++) {
reg_delay_us;
}
}
void cmd_help() {
print("\n [0] toggle address\n");
print(" [D] dump memory as bytes\n");
print(" [W] dump memory as words\n");
print(" [9] reset memory page\n");
print(" [ ] next memory page\n");
print(" [I] system info\n");
print(" [M] test memory\n");
print(" [X] receive to memory (xfer)\n");
print(" [1] led on\n");
print(" [2] led off\n");
print(" [B] boot to 0x40000000\n");
print(" [L] boot LIX\n");
print(" [E] echo mode (exit with 0)\n");
print(" [H] help\n\n");
}
void cmd_toggle_addr_ptr(void) {
if (addr_ptr == MEM_HRAM) {
addr_ptr = MEM_SRAM;
mem_total = MEM_SRAM_SIZE;
} else if (addr_ptr == MEM_SRAM) {
addr_ptr = MEM_VRAM;
mem_total = vid_cols * vid_rows;
} else if (addr_ptr == MEM_VRAM) {
addr_ptr = MEM_FLASH;
mem_total = MEM_FLASH_SIZE;
} else if (addr_ptr == MEM_FLASH) {
addr_ptr = MEM_HRAM;
mem_total = MEM_HRAM_SIZE;
}
}
void cmd_xfer() {
uint32_t b = xfer_recv(addr_ptr);
print("xfer received ");
print_hex(b, 8);
print(" bytes at ");
print_hex(addr_ptr, 8);
print("\n");
}
void cmd_load_lix() {
print("loading LIX ... ");
memcpy(LIX_MEM_ADDR, LIX_FLASH_ADDR, LIX_SIZE);
print("done.\n");
}
void main() {
int cmd;
int automated = 0;
reg_leds = 0x01;
// if (reg_rtc < 3) automated = 1;
print("ZBL\n");
vid_cols = (reg_cfg_vid & 0xff00) >> 8;
vid_rows = reg_cfg_vid & 0xff;
vid_hres = (reg_cfg_vid_res & 0xffff0000) >> 16;
vid_vres = reg_cfg_vid_res & 0xffff;
#if defined FPGA_ICE40 && !BOARD_KOLIBRI && !BOARD_KUCHEN && !BOARD_KROTE
// clear SRAM
addr_ptr = MEM_SRAM;
mem_total = MEM_SRAM_SIZE;
cmd_memzero();
#endif
addr_ptr = MEM_HRAM;
mem_total = MEM_HRAM_SIZE;
reg_leds = 0x00;
#ifdef EN_BANNER
print(" _____________ _________\n");
print("/_ | | | | | / _| \\\n");
print(" / /_ | -' \\ _| ' /\n");
print("/___/___|___|__\\_\\__|_:_\\\n");
print("\n");
#endif
cmd_info();
cmd_help();
while (1) {
print("ZBL@");
print_hex(addr_ptr, 8);
print("> ");
while (1) {
cmd = getchar();
if (cmd != EOF) {
automated = 0;
break;
}
// auto-boot LIX after 5 seconds
if (automated && reg_rtc >= 5) {
cmd_load_lix();
return;
}
}
print("\n");
switch (cmd) {
case 'h':
case 'H':
cmd_help();
break;
case '0':
cmd_toggle_addr_ptr();
break;
case '1':
reg_leds = 0x01;
break;
case '2':
reg_leds = 0x00;
break;
case '9':
addr_ptr = 0x40000000;
break;
case ' ':
addr_ptr += 256;
break;
case 's':
cmd_sleep();
break;
case 'x':
case 'X':
cmd_xfer();
break;
case 'i':
case 'I':
cmd_info();
break;
case 'd':
case 'D':
cmd_dump_bytes();
break;
case 'w':
case 'W':
cmd_dump_words();
break;
case 'm':
case 'M':
memtest(addr_ptr, mem_total);
break;
case 'b':
case 'B':
print("booting ... ");
return;
break;
case 'l':
case 'L':
cmd_load_lix();
print("booting LIX ... ");
return;
break;
case 'e':
case 'E':
cmd_echo();
break;
case 'z':
case 'Z':
cmd_memzero();
break;
default:
continue;
}
}
}