-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcrown.py
505 lines (432 loc) · 22.5 KB
/
crown.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
import gensim
from gensim.parsing.porter import PorterStemmer
import json
import os
from spacy.tokenizer import Tokenizer
from spacy.lang.en import English
import numpy as np
import re
from sklearn.metrics.pairwise import cosine_similarity as cs
import networkx as nx
import operator
import math
import itertools
import pickle
from argparse import ArgumentParser
import subprocess
from subprocess import SubprocessError
import logging
import time
import dbm
nlp = English()
nlp.add_pipe(nlp.create_pipe('sentencizer'))
stemmer = PorterStemmer()
#location of Indri index files
CAR_INDEX_LOC ='data/indri_data/car_index/'
MARCO_INDEX_LOC = 'data/indri_data/marco_index/'
#Indri command line tool
INDRI_LOC = 'indri-5.12/runquery'
#the co-occurence window is set to 3 for our graph
COOC_WINDOW = 3
class CROWN:
def __init__(self, word_vectors, prox_dict, marco_db, car_db):
self.word_vectors = word_vectors
self.prox_dict = prox_dict
self.call_time = time.time()
self.logger = logging.getLogger("crown_logger_" + str(self.call_time))
self.crown_logger = logging.FileHandler("logging/Log-" + str(self.call_time) + ".log")
self.crown_logger.setLevel(logging.DEBUG)
self.logger.addHandler(self.crown_logger)
self.marco_db = marco_db
self.car_db = car_db
#return tokenized query and the embedding of each token
def getQueryEmbeddings(self, query):
query_embeddings = dict()
doc = nlp(query)
tokens = [token.text.lower() for token in doc if token.text.isalpha() and not token.is_stop ]
for token in tokens:
try:
query_embeddings[token] = self.word_vectors[token]
except KeyError:
s_token = stemmer.stem(token)
try:
query_embeddings[token] = self.word_vectors[s_token]
except KeyError:
pass
return (query_embeddings, tokens)
#get embeddings for each token, the information in which paragraph certain token appears and the sentence-wise passage
def getParagraphInfos(self, paragraph_map):
token_embeddings = dict()
token_to_ids = dict()
sentence_info = dict()
passage_sentences = dict()
for key in paragraph_map:
sentence_map = dict()
p_tokens = []
#split passage into sentences
text_sentences = nlp( paragraph_map[key])
passage_sentences[key] = []
i = 1
for sentence in text_sentences.sents:
if sentence.text == []:
continue
tokens = list([token.text.lower() for token in sentence if token.text.isalpha() and not token.is_stop])
if tokens == []:
continue
passage_sentences[key].append(sentence.text)
sentence_map[i] = tokens
i += 1
p_tokens.extend(tokens)
sentence_info[key] = sentence_map
#get embeddings for each token
for token in set(p_tokens):
try:
token_embeddings[token] = self.word_vectors[token]
except KeyError:
s_token = stemmer.stem(token)
try:
token_embeddings[token] = self.word_vectors[s_token]
except KeyError:
pass
if token in token_to_ids.keys():
token_to_ids[token].append(key)
else:
token_to_ids[token] = [key]
return (token_embeddings, token_to_ids, passage_sentences, sentence_info)
#parse indri result file
#returns paragraphs and its corresponding scores given by indri
def processIndriResult(self, filename):
with open(filename, 'r') as fp:
indri_line = fp.readline()
indri_paragraphs = dict()
paragraph_score = dict()
while indri_line:
splits = indri_line.split(" ")
paragraph = ""
if len(splits) < 5:
self.logger.warn("processed indri line has not the expected format!")
indri_line = fp.readline()
continue
if "MARCO" in splits[2]:
try:
paragraph = self.marco_db[splits[2]].decode("utf-8")
except KeyError:
self.logger.warn("no file with this id found, id was: %s", splits[2])
continue
elif "CAR" in splits[2]:
try:
paragraph = self.car_db[splits[2]].decode("utf-8")
except KeyError:
self.logger.warn("no file with this id found, id was: %s", splits[2])
continue
else:
self.logger.warn("no file with this id found, id was: %s", splits[2])
if not paragraph=="":
indri_paragraphs[splits[2]] = paragraph
paragraph_score[splits[2]] = splits[3]
indri_line = fp.readline()
return (indri_paragraphs, paragraph_score)
#creates an indri query file using the unweighted combination of queries from the current the previous and the first turn
def createIndriQuery(self, tokens, query_tokens, turn_nbr):
with open("data/indri_data/indri_queries/" + str(self.call_time) + "_turn" + str(turn_nbr+1) + "_indri-query.query", "w") as query_file:
xmlString = '''<parameters> <index>''' + MARCO_INDEX_LOC + '''</index>
<index>''' + CAR_INDEX_LOC + '''</index>
<query><number>''' + str(turn_nbr+1) + '''</number>'''
if turn_nbr == 0:
line_str = " ".join(map(str, tokens))
new_line = "<text>#combine(" + line_str +")</text>"
elif turn_nbr == 1:
prev_data = query_tokens[turn_nbr-1]
line_str = " ".join(map(str, tokens)) + " " + " ".join(map(str, prev_data))
words = line_str.split()
line_str = " ".join(sorted(set(words), key=words.index))
new_line = "<text>#combine(" + line_str +")</text>"
else:
prev_data = query_tokens[turn_nbr-1]
first_data = query_tokens[0]
line_str = " ".join(map(str, tokens))+ " " + " ".join(map(str, prev_data)) + " "+ " ".join(map(str, first_data))
words = line_str.split()
line_str = " ".join(sorted(set(words), key=words.index))
new_line = "<text>#combine(" + line_str +")</text>"
xmlString += new_line
xmlString += '''</query></parameters>'''
query_file.write(xmlString)
#main answering function: receives all relevant parameters to answer the request
# returns the highest scoring paragraphs
def retrieveAnswer(self, parameters):
#read in the parameters
conv_queries = parameters["questions"]
turn_nbr = len(conv_queries) -1
INDRI_RET_NUM = int(parameters["indriRetNbr"])
EDGE_THRESHOLD = float(parameters["edgeThreshold"])
NODE_MATCH_THRESHOLD = float(parameters["nodeThreshold"])
res_nbr = int(parameters["retNbr"])
convquery_type = parameters["convquery"]
h1 = float(parameters["h1"])
h2 = float(parameters["h2"])
h3 = float(parameters["h3"])
h4 = float(parameters["h4"])
self.logger.info("The following parameters have been received: ")
self.logger.info("conv_queries: %s", conv_queries)
self.logger.info("turn_nbr: %s", turn_nbr)
self.logger.info("INDRI_RET_NUM: %i", INDRI_RET_NUM)
self.logger.info("EDGE_THRESHOLD: %f", EDGE_THRESHOLD)
self.logger.info("NODE_MATCH_THRESHOLD: %f", NODE_MATCH_THRESHOLD)
self.logger.info("res_nbr: %i", res_nbr)
self.logger.info("convquery_type: %s", convquery_type)
self.logger.info("h1: %f, h2: %f, h3: %f", h1, h2, h3 )
turn_query_embeddings = dict()
query_tokens = dict()
#get tokenized queries and the embeddings of each token
for i in range(len(conv_queries)):
turn_query_embeddings[i], query_tokens[i] = self.getQueryEmbeddings(conv_queries[i])
current_query_embeddings = turn_query_embeddings[turn_nbr]
tokens = query_tokens[turn_nbr]
query_turn_weights = dict()
conv_query_embeddings = dict(current_query_embeddings)
#create the conversational query (3 options are available)
if convquery_type=="conv_uw":
if turn_nbr != 0:
conv_query_embeddings.update(turn_query_embeddings[0])
elif convquery_type=="conv_w1":
if turn_nbr != 0:
conv_query_embeddings.update(turn_query_embeddings[0])
for token in conv_query_embeddings.keys():
query_turn_weights[token] = 1.0
if turn_nbr > 1:
for token in turn_query_embeddings[turn_nbr-1].keys():
if not token in query_turn_weights.keys():
query_turn_weights[token] = turn_nbr/(turn_nbr+1)
conv_query_embeddings.update(turn_query_embeddings[turn_nbr-1])
elif convquery_type=="conv_w2":
query_turn_weights = dict()
for j in range(turn_nbr+1):
t_embeddings = turn_query_embeddings[j]
for token in t_embeddings.keys():
conv_query_embeddings[token] = t_embeddings[token]
if j == 0 or j == turn_nbr:
query_turn_weights[token] = 1.0
else:
if token in query_turn_weights.keys():
if query_turn_weights[token] == 1.0:
continue
query_turn_weights[token] = (j+1)/(turn_nbr+1)
else:
self.logger.warn("conversational query option is unknown! Defaultwise conv_uw will be used")
if turn_nbr != 0:
conv_query_embeddings.update(turn_query_embeddings[0])
#create Indri query
self.createIndriQuery(tokens, query_tokens, turn_nbr)
self.logger.info("indri query created successfully")
with open('data/indri_data/indri_results/result' + "_" + str(self.call_time) + "_turn" + str(turn_nbr+1) + '.txt', "w") as outfile:
subprocess.run([INDRI_LOC + "/IndriRunQuery", "data/indri_data/indri_queries/" + str(self.call_time) + "_turn" + str(turn_nbr+1) + "_indri-query.query", "-count= "+ str(INDRI_RET_NUM), "-trecFormat=true"], stdout=outfile)
#prepare indri paragraphs: get paragraph sentences and original indri scores from indri result file
indri_paragraphs, indri_paragraph_score = self.processIndriResult('data/indri_data/indri_results/result' + "_" + str(self.call_time) + "_turn" + str(turn_nbr+1) + '.txt')
#get tokenized paragraphs, its token embeddings and info which token belongs to which paragraph
token_embeddings, token_to_ids, passage_sentences, sentence_info = self.getParagraphInfos(indri_paragraphs)
#calculate our indriscore which is 1 / indri rank
for id in indri_paragraph_score.keys():
indri_paragraph_score[id] = 1/int(indri_paragraph_score[id])
self.logger.info("indri passages retrieved")
query_to_graph_token = dict()
token_node_weights = dict()
#calculate node weights -> note: there are tokens which do not have an embedding: node weight=0
for p_token in token_to_ids.keys():
max_sim = 0.0
max_q_token = ''
if p_token in token_embeddings.keys():
for q_token in conv_query_embeddings.keys():
[[sim]] = cs([token_embeddings[p_token]], [conv_query_embeddings[q_token]])
if sim > max_sim:
max_sim = sim
max_q_token = q_token
# if similarity is above the node threshold then the node weight will be considered and the token will be further considered for the edge weight calculation
if max_sim > NODE_MATCH_THRESHOLD:
#calculate node weight
if max_q_token in query_turn_weights.keys():
token_node_weights[p_token] = max_sim * query_turn_weights[max_q_token]
else:
token_node_weights[p_token] = max_sim
#store maximal similar query token of a paragraph token for edge weight calculation
if not p_token in query_to_graph_token.keys():
query_to_graph_token[p_token] = [max_q_token]
else:
query_to_graph_token[p_token].append(max_q_token)
else:
token_node_weights[p_token] = 0.0
#score paragraphs
scored_paragraphs_dict = dict()
node_score_dict = dict()
edge_score_dict = dict()
pos_score_dict = dict()
most_rel_sentences = dict()
#store info about highest matching nodes and edges
node_map = dict()
edge_map = dict()
edge_weight_map = dict()
#go over each candidate paragraph
for p_key in indri_paragraphs.keys():
node_map[p_key] = []
edge_map[p_key] = []
p_score = 0.0
node_score = 0.0
edge_score = 0.0
#get all tokens of current paragraph sentence-wise
sentence_map = sentence_info[p_key]
sentence_node_score_dict = dict()
#calculate node score (sentence-wise and for whole paragraph)
for s_id in sentence_map.keys():
sentence_node_score = 0.0
for token in sentence_map[s_id]:
node_weight = token_node_weights[token]
if node_weight > 0.0:
sentence_node_score += node_weight
node_score += node_weight
if not token in node_map[p_key]:
node_map[p_key].append(token)
sentence_node_score_dict[s_id] = sentence_node_score
node_score_dict[p_key] = node_score
sentence_rel_score_dict = dict()
sentence_rank_dict = dict()
#calculate edge score and sentence relevance for position score
for s_id in sentence_map.keys():
sentence_edge_score = 0.0
s_tokens = sentence_map[s_id]
for k in range(len(s_tokens)):
#check if token is close enough to a conversational query token (> NODE_MATCH_THRESHOLD)
if not s_tokens[k] in query_to_graph_token.keys():
continue
if k >= (len(s_tokens) - COOC_WINDOW):
upper_3 = len(s_tokens)
else:
upper_3 = k+COOC_WINDOW+1
# go over all tokens which are in proximity 3 to current token
for j in range(k+1, upper_3):
if s_tokens[j] == s_tokens[k]:
continue
if not s_tokens[j] in query_to_graph_token.keys():
continue
t1 = s_tokens[k]
t2 = s_tokens[j]
#check if both tokens are not most similar to the same query token
if not np.intersect1d(query_to_graph_token[t1], query_to_graph_token[t2]):
edge_weight = -1.0
#get edge weights
if t1 < t2:
if str(t1) + "_" + str(t2) in self.prox_dict.keys():
edge_weight = self.prox_dict[str(t1) + "_" + str(t2)]
else:
if str(t2) + "_" + str(t1) in self.prox_dict.keys():
edge_weight = self.prox_dict[str(t2) + "_" + str(t1)]
if edge_weight != -1.0:
if edge_weight > EDGE_THRESHOLD:
edge_score += edge_weight
sentence_edge_score += edge_weight
#store infos about most relevant edges
if t1 < t2:
pair = "(" + str(t1) + "," + str(t2) + ")"
else:
pair = "(" + str(t2) + "," + str(t1) + ")"
edge_map[p_key].append(pair)
if not pair in edge_weight_map.keys():
edge_weight_map[pair] = edge_weight
#store info about sentence relevance and calculate and sentence rank
sentence_rel_score_dict[s_id] = sentence_node_score_dict[s_id] + sentence_edge_score
sentence_rank_dict[s_id] = sentence_rel_score_dict[s_id] * (1/s_id)
#store final edge score for the current paragraph
edge_score_dict[p_key] = edge_score
#calculate position score based on sentence ranks
if sentence_rank_dict:
pos_score_dict[p_key] = max(sentence_rank_dict.items(), key=operator.itemgetter(1))[1]
else:
pos_score_dict[p_key] = 0.0
self.logger.info("node, edge and positions scores are calculated")
#store most relevant sentences for each paragraph
if sentence_rel_score_dict:
sorted_rel_sentences = sorted(sentence_rel_score_dict.items(), key=operator.itemgetter(1), reverse=True)
most_rel_sentences[p_key] = [x[0] for x in sorted_rel_sentences]
else:
most_rel_sentences[p_key] = [1]
if len(sentence_info[p_key]) <= 3:
del most_rel_sentences[p_key][1:]
elif len(sentence_info[p_key]) == 4:
del most_rel_sentences[p_key][2:]
else:
del most_rel_sentences[p_key][3:]
for p_key in indri_paragraphs.keys():
if not p_key in indri_paragraph_score.keys():
indri_paragraph_score[p_key] = 0.0
#rescale scores: 1/rank (where rank is the rank for each individual score)
sorted_nodes = sorted(node_score_dict.items(), key=operator.itemgetter(1), reverse=True)
node_rank = 1
prev_node = -1
old_node_rank = -1
for entry in sorted_nodes:
if prev_node == format(node_score_dict[entry[0]], '.4f'):
node_score_dict[entry[0]] = 1/old_node_rank
else:
prev_node = format(node_score_dict[entry[0]], '.4f')
node_score_dict[entry[0]] = 1/node_rank
old_node_rank = node_rank
node_rank += 1
sorted_edges = sorted(edge_score_dict.items(), key=operator.itemgetter(1), reverse=True)
edge_rank = 1
prev_edge = -1
old_edge_rank = -1
for entry in sorted_edges:
if prev_edge == format(edge_score_dict[entry[0]], '.4f'):
edge_score_dict[entry[0]] = 1/old_edge_rank
else:
prev_edge = format(edge_score_dict[entry[0]], '.4f')
edge_score_dict[entry[0]] = 1/edge_rank
old_edge_rank = edge_rank
edge_rank += 1
sorted_pos = sorted(pos_score_dict.items(), key=operator.itemgetter(1), reverse=True)
pos_rank = 1
prev_pos = -1
old_pos_rank = -1
for entry in sorted_pos:
if prev_pos == format(pos_score_dict[entry[0]], '.4f'):
pos_score_dict[entry[0]] = 1/old_pos_rank
else:
prev_pos = format(pos_score_dict[entry[0]], '.4f')
pos_score_dict[entry[0]] = 1/pos_rank
old_pos_rank = pos_rank
pos_rank += 1
#combine scores
for p_key in indri_paragraphs.keys():
p_score = h1 * indri_paragraph_score[p_key] + h2 * node_score_dict[p_key] + h3 * edge_score_dict[p_key] + h4 * pos_score_dict[p_key]
scored_paragraphs_dict[p_key] = p_score
#sort paragraphs according to their scores
sorted_p = sorted(scored_paragraphs_dict.items(), key=operator.itemgetter(1), reverse=True)
scored_paragraphs = [x[0] for x in sorted_p]
#sort node and edge token candidates
for p_key in indri_paragraphs.keys():
node_map[p_key] = list(set(node_map[p_key]))
node_map[p_key] = sorted(node_map[p_key], key=lambda x: token_node_weights[x], reverse=True)
if len(node_map[p_key]) > 5:
del node_map[p_key][5:]
edge_map[p_key] = list(set(edge_map[p_key]))
edge_map[p_key] = sorted(edge_map[p_key], key = lambda x: edge_weight_map[x], reverse=True)
if len(edge_map[p_key]) > 5:
del edge_map[p_key][5:]
#get final list of paragraphs that will be returned to the user
result_paragraphs = []
result_ids = []
result_node_map = dict()
result_edge_map = dict()
top_score_sentences = dict()
for p in range(len(scored_paragraphs)):
if p < res_nbr:
result_paragraphs.append(passage_sentences[scored_paragraphs[p]])
result_ids.append(scored_paragraphs[p])
self.logger.info("Top : %i", (p+1))
self.logger.info("Paragraph ID: %s, score: %s", scored_paragraphs[p], sorted_p[p][1])
self.logger.info("Paragraph: %s", passage_sentences[scored_paragraphs[p]])
else:
break
for res_id in result_ids:
result_node_map[res_id] = node_map[res_id]
result_edge_map[res_id] = edge_map[res_id]
top_score_sentences[res_id] = most_rel_sentences[res_id]
return (result_paragraphs, result_ids, result_node_map, result_edge_map, top_score_sentences)