-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharguments.py
118 lines (111 loc) · 2.94 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import argparse
import os
def argparser():
parser = argparse.ArgumentParser()
# for model
parser.add_argument(
'--seq_window_lengths',
type=int,
nargs='+',
help='Space seperated list of motif filter lengths. (ex, --window_lengths 4 8 12)'
)
parser.add_argument(
'--smi_window_lengths',
type=int,
nargs='+',
help='Space seperated list of motif filter lengths. (ex, --window_lengths 4 8 12)'
)
parser.add_argument(
'--num_windows',
type=int,
nargs='+',
help='Space seperated list of the number of motif filters corresponding to length list. (ex, --num_windows 100 200 100)'
)
parser.add_argument(
'--num_hidden',
type=int,
default=0,
help='Number of neurons in hidden layer.'
)
parser.add_argument(
'--num_classes',
type=int,
default=0,
help='Number of classes (families).'
)
parser.add_argument(
'--max_seq_len',
type=int,
default=0,
help='Length of input sequences.'
)
parser.add_argument(
'--max_smi_len',
type=int,
default=0,
help='Length of input sequences.'
)
# for learning
parser.add_argument(
'--learning_rate',
type=float,
default=0.001,
help='Initial learning rate.'
)
parser.add_argument(
'--num_epoch',
type=int,
default=500,
help='Number of epochs to train.'
)
parser.add_argument(
'--batch_size',
type=int,
default=256,
help='Batch size. Must divide evenly into the dataset sizes.'
)
parser.add_argument(
'--dataset_path',
type=str,
default='data/davis/',
help='Directory for input data.'
)
parser.add_argument(
'--problem_type',
type=int,
default=1,
help='Type of the prediction problem (1-4)'
)
parser.add_argument(
'--binary_th',
type=float,
default=0.0,
help='Threshold to split data into binary classes'
)
parser.add_argument(
'--is_log',
type=int,
default=0,
help='use log transformation for Y'
)
parser.add_argument(
'--checkpoint_path',
type=str,
default='',
help='Path to write checkpoint file.'
)
parser.add_argument(
'--log_dir',
type=str,
default='loggg/tmp',
help='Directory for log data.'
)
FLAGS, unparsed = parser.parse_known_args()
# check validity
# assert( len(FLAGS.window_lengths) == len(FLAGS.num_windows) )
return FLAGS
def logging(msg, FLAGS):
fpath = os.path.join(FLAGS.log_dir, "log.txt")
with open(fpath, "a") as fw:
fw.write("%s\n" % msg)
# print(msg)