-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
471 lines (379 loc) · 18.2 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
from torch import nn
import torch
from torch import nn
from torch.functional import F
import torchmetrics
import torchvision
import pytorch_lightning as pl
from neptune.new.types import File
from utils import accuracy, dice_score, correct_list, get_figure
from matplotlib import pyplot as plt
import random
class Block(nn.Module):
def __init__(self, in_ch, out_ch, mode='encoder'):
super().__init__()
assert mode in ['encoder', 'decoder']
if mode == 'encoder':
self.conv1 = nn.Conv2d(in_ch, out_ch, 3, padding='same')
elif mode == 'decoder':
self.conv1 = nn.ConvTranspose2d(in_ch, out_ch, 2, 2)
self.bn = nn.BatchNorm2d(out_ch)
self.relu = nn.ReLU()
self.conv2 = nn.Conv2d(out_ch, out_ch, 3, padding='same')
def forward(self, x):
return self.conv2(self.relu(self.bn(self.conv1(x))))
class Encoder(nn.Module):
def __init__(self, chs=(1, 64, 128, 256, 512, 1024)):
super().__init__()
self.last_channel = chs[-1]
self.chs = chs
self.enc_blocks = nn.ModuleList([Block(chs[i], chs[i + 1]) for i in range(len(chs) - 1)])
self.pool = nn.MaxPool2d(2)
def forward(self, x):
for block in self.enc_blocks:
z = block(x)
x = self.pool(z)
return z
class Decoder(nn.Module):
def __init__(self, chs=(1024, 512, 256, 128, 64, 32, 16)):
super().__init__()
self.chs = chs
self.dec_blocks = nn.ModuleList([Block(chs[i], chs[i + 1], mode='decoder') for i in range(len(chs) - 1)])
def forward(self, x):
for i in range(len(self.chs) - 1):
x = self.dec_blocks[i](x)
return x
class UNetBlock(nn.Module):
def __init__(self, in_ch, out_ch):
super().__init__()
self.conv1 = nn.Conv2d(in_ch, out_ch, 3, padding='same')
self.bn = nn.BatchNorm2d(out_ch)
self.relu = nn.ReLU()
self.conv2 = nn.Conv2d(out_ch, out_ch, 3, padding='same')
def forward(self, x):
return self.conv2(self.relu(self.bn(self.conv1(x))))
class UNetEncoder(nn.Module):
def __init__(self, chs=(1, 64, 128, 256, 512, 1024)):
super().__init__()
self.last_channel = chs[-1]
self.chs = chs
self.enc_blocks = nn.ModuleList([UNetBlock(chs[i], chs[i + 1]) for i in range(len(chs) - 1)])
self.pool = nn.MaxPool2d(2)
def forward(self, x, return_ftrs=False):
ftrs = []
for block in self.enc_blocks:
x = block(x)
ftrs.append(x)
x = self.pool(x)
return ftrs if return_ftrs else ftrs[::-1][0]
class UNetDecoder(nn.Module):
def __init__(self, dec_chs=(1024, 512, 256, 128, 64), enc_chs=(1, 64, 128, 256, 512, 1024)):
super().__init__()
self.last_channel = dec_chs[-1]
self.dec_chs = dec_chs
self.enc_chs_rev = enc_chs[::-1]
self.upconvs = nn.ModuleList([nn.ConvTranspose2d(dec_chs[i], dec_chs[i + 1], 2, 2) for i in range(len(dec_chs) - 1)])
self.dec_blocks = nn.ModuleList([UNetBlock(dec_chs[i+1] + self.enc_chs_rev[i+1], dec_chs[i + 1]) for i in range(len(dec_chs) - 1)])
def forward(self, x, encoder_features):
for i in range(len(self.dec_chs) - 1):
x = self.upconvs[i](x)
enc_ftrs = self.crop(encoder_features[i], x)
x = torch.cat([x, enc_ftrs], dim=1)
x = self.dec_blocks[i](x)
return x
def crop(self, enc_ftrs, x):
_, _, H, W = x.shape
enc_ftrs = torchvision.transforms.CenterCrop([H, W])(enc_ftrs)
return enc_ftrs
class AE_UNet(nn.Module):
def __init__(self, enc_chs=(1, 16, 32, 64, 64, 128, 128), dec_chs=(128, 128, 64, 64, 32, 16),
num_class=1, retain_dim=False, image_size=300, unet_flag=False):
super().__init__()
self.unet_flag = unet_flag
if not unet_flag:
self.encoder = Encoder(enc_chs)
self.decoder = Decoder(dec_chs)
else:
self.encoder = UNetEncoder(enc_chs)
self.decoder = UNetDecoder(dec_chs, enc_chs)
kernel_size = 2 * (1 + int(image_size / (2 ** len(enc_chs)))) - 1
self.channel_wise_conv = nn.Conv2d(enc_chs[-1], enc_chs[-1], kernel_size, padding='same', groups=enc_chs[-1])
self.head = nn.Conv2d(dec_chs[-1], num_class, 1)
self.retain_dim = retain_dim
self.image_size = image_size
def forward(self, x):
if not self.unet_flag:
z = self.extract_features(x)
out = self.decoder(z)
else:
z, enc_ftrs = self.extract_features(x)
out = self.decoder(z, enc_ftrs[::-1][1:])
out = self.head(out)
if self.retain_dim:
out = F.interpolate(out, (self.image_size, self.image_size))
return out
def extract_features(self, x):
if not self.unet_flag:
z = self.encoder(x)
z = self.channel_wise_conv(z)
return z
else:
enc_ftrs = self.encoder(x, return_ftrs=True)
z = self.channel_wise_conv(enc_ftrs[::-1][0])
return z, enc_ftrs
def get_embedding(self, x):
if not self.unet_flag:
z = self.extract_features(x)
else:
z, _ = self.extract_features(x)
return F.adaptive_avg_pool2d(z, (1, 1))
class MaskerModelRL(nn.Module):
def __init__(self, model_config, device='cuda'):
super().__init__()
self.model = AE_UNet(**model_config)
self.image_size = model_config['image_size']
def forward(self, x):
mask = self.model.forward(x)
return mask
def get_image_size_mask(self, mask):
image_size_mask = F.interpolate(mask, (self.image_size, self.image_size))
return image_size_mask
def create_mask(self, image, mask_size, current_epoch, max_epochs, mask_value=1.0):
if isinstance(mask_size, int):
mask_h = mask_size
mask_w = mask_size
else:
mask_h = mask_size[0]
mask_w = mask_size[1]
image_h = image.shape[-2]
image_w = image.shape[-1]
mask = torch.zeros_like(image, dtype=torch.float)
mask_original = torch.zeros_like(image, dtype=torch.float)
assert mask_h <= image_h and mask_w <= image_w
for i in range(len(image)):
# threshold = 1 - 3*current_epoch/max_epochs
# if random.random() < threshold:
if current_epoch < max_epochs * 0.2:
mask_start_h = random.randint(0, image_h - mask_h)
mask_start_w = random.randint(0, image_w - mask_w)
else:
mask_start_h, mask_start_w = (image[i][0]==torch.max(image[i][0])).nonzero()[0]
mask_original[i, 0][mask_start_h, mask_start_w] = mask_value
mask[i, 0][mask_start_h:mask_start_h + mask_h, mask_start_w:mask_start_w + mask_w] = mask_value
return mask, mask_original
class IntelligentMaskModelRL(pl.LightningModule):
def __init__(self, recon_model_config, masker_model_config, lr_masker_model=1e-3, lr_recon_model=1e-3, run_id=-1, loss_on_mask=False, use_scheduler=True, milestones=[100, 200]):
super().__init__()
self.save_hyperparameters()
self.recon_model = AE_UNet(**recon_model_config)
self.masker_model = MaskerModelRL(masker_model_config)
self.lr_masker_model = lr_masker_model
self.lr_recon_model = lr_recon_model
self.loss = nn.MSELoss(reduction='none')
self.loss_on_mask = loss_on_mask
self.use_scheduler = use_scheduler
self.milestones = milestones
self.run_id = run_id
self.automatic_optimization = False
def forward(self, x):
return self.model.forward(x)
def get_loss(self, x_pred, x, mask):
if self.loss_on_mask:
loss = torch.sum(self.loss(x_pred, x) * mask) / torch.sum(mask)
else:
loss = torch.mean(self.loss(x_pred, x))
return loss
def training_step(self, train_batch, batch_idx):
opt_recon, opt_masker = self.optimizers()
scheduler_recon, scheduler_masker = self.lr_schedulers()
x, _ = train_batch
loss_pred = self.masker_model(x)
mask, mask_original = self.masker_model.create_mask(loss_pred, 2, self.current_epoch, self.trainer.max_epochs)
mask = self.masker_model.get_image_size_mask(mask)
x_masked = (1 - mask) * x
x_pred = self.recon_model.forward(x_masked)
# Train Reconstruction model
opt_recon.zero_grad()
recon_loss = self.get_loss(x_pred, x, mask)
self.log('train_loss', recon_loss, prog_bar=True)
self.manual_backward(recon_loss, retain_graph=True)
opt_recon.step()
if self.use_scheduler and self.trainer.is_last_batch:
scheduler_recon.step()
# Train Masker model
opt_masker.zero_grad()
x_pred = x_pred.detach()
recon_loss_per_batch = torch.sum(self.loss(x_pred, x.detach()), dim=(1,2,3))
loss_pred_per_batch = torch.sum(mask_original * loss_pred, dim=(1,2,3))
masker_loss = torch.mean(self.loss(recon_loss_per_batch, loss_pred_per_batch))
self.manual_backward(masker_loss)
opt_masker.step()
if self.use_scheduler and self.trainer.is_last_batch:
scheduler_masker.step()
# Log image sample
if batch_idx == 0:
fig = get_figure(x[0], loss_pred[0], mask[0], x_masked[0], x_pred[0])
plt.title(f'True Loss:{recon_loss_per_batch[0]:.2f}, Pred Loss: {loss_pred_per_batch[0]:.2f}')
plt.show()
plt.close()
def on_before_zero_grad(self, optimizer):
parameters = [p for p in self.masker_model.parameters() if p.grad is not None]
if len(parameters) > 0:
total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach()) for p in parameters])).item()
else:
total_norm = -1
self.log("total_grad_norm", total_norm)
def validation_step(self, val_batch, batch_idx):
x, _ = val_batch
loss_pred = self.masker_model(x)
mask, mask_original = self.masker_model.create_mask(loss_pred, 3, self.current_epoch, self.trainer.max_epochs)
mask = self.masker_model.get_image_size_mask(mask)
x_masked = (1 - mask) * x
x_pred = self.recon_model.forward(x_masked)
loss = self.get_loss(x_pred, x, mask)
self.log('val_loss', loss, prog_bar=True)
def configure_optimizers(self):
opt_recon_model = torch.optim.Adam(self.recon_model.parameters(), lr=self.lr_recon_model)
opt_masker_model = torch.optim.Adam(self.masker_model.parameters(), lr=self.lr_masker_model)
scheduler_recon = torch.optim.lr_scheduler.MultiStepLR(opt_recon_model, milestones=self.milestones, gamma=0.33)
scheduler_masker = torch.optim.lr_scheduler.MultiStepLR(opt_masker_model, milestones=self.milestones, gamma=0.33)
return [opt_recon_model, opt_masker_model], [scheduler_recon, scheduler_masker]
class ClfBlock(nn.Module):
def __init__(self, nfeat, dropout, hidden=-1, nclass=1):
super().__init__()
layers = []
if hidden == -1 or len(hidden) == 0:
layers.append(nn.Linear(nfeat, nclass))
else:
layers.append(nn.Linear(nfeat, hidden[0]))
for i in range(len(hidden) - 1):
layers.append(nn.Linear(hidden[i], hidden[i + 1]))
layers.append(nn.Linear(hidden[-1], nclass))
self.clflayers = nn.ModuleList(layers)
self.dropout = dropout
def forward(self, x):
end_layer = len(self.clflayers) - 1
for i in range(end_layer):
x = F.dropout(x, self.dropout, training=self.training)
x = self.clflayers[i](x)
x = F.relu(x)
x = F.dropout(x, self.dropout, training=self.training)
output = self.clflayers[-1](x)
output = F.log_softmax(output, dim=1)
return output
class BaseClassifier(pl.LightningModule):
def __init__(self, nclass):
super().__init__()
self.lr = None
self.weight_decay = None
self.use_scheduler = None
self.milestones = None
self.encoder = None
self.clf = None
self.loss = None
self.train_acc = torchmetrics.Accuracy()
self.val_acc = torchmetrics.Accuracy()
self.test_acc = torchmetrics.Accuracy()
self.test_in_val_acc = torchmetrics.Accuracy()
self.train_f1mac = torchmetrics.F1Score(nclass,average='macro')
self.val_f1mac = torchmetrics.F1Score(nclass,average='macro')
self.test_f1mac = torchmetrics.F1Score(nclass,average='macro')
self.test_in_val_f1mac = torchmetrics.F1Score(nclass,average='macro')
self.train_auroc = torchmetrics.AUROC(nclass, average='macro')
self.val_auroc = torchmetrics.AUROC(nclass, average='macro')
self.test_auroc = torchmetrics.AUROC(nclass, average='macro')
self.test_in_val_auroc = torchmetrics.AUROC(nclass, average='macro')
self.test_confmat = torchmetrics.ConfusionMatrix(num_classes=nclass)
def forward(self, x):
z = self.extract_features(x)
pred = self.clf(z)
return pred
def extract_features(self, x):
z = self.encoder(x)
return z
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.lr, weight_decay=self.weight_decay)
if self.use_scheduler:
# scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=30)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=self.milestones, gamma=0.33)
return {"optimizer": optimizer, "lr_scheduler": {"scheduler": scheduler, "monitor": "val_loss/dataloader_idx_0"}}
else:
return optimizer
def training_step(self, train_batch, batch_idx):
x, y = train_batch
preds = self.forward(x)
loss = self.loss(preds, y)
self.log('train_loss', loss.item(), prog_bar=True, on_step=False, on_epoch=True, logger=True)
self.train_acc(preds, y)
self.log('train_acc', self.train_acc, on_step=False, on_epoch=True)
self.train_f1mac(preds, y)
self.log('train_f1macro', self.train_f1mac, on_step=False, on_epoch=True)
self.train_auroc(preds, y)
self.log('train_auroc', self.train_auroc, on_step=False, on_epoch=True)
return loss
def validation_step(self, val_batch, batch_idx, dataloader_idx):
x, y = val_batch
preds = self.forward(x)
loss = self.loss(preds, y)
if dataloader_idx == 0:
self.log('val_loss', loss, prog_bar=True)
self.val_acc(preds, y)
self.log('val_acc', self.val_acc, on_step=False, on_epoch=True)
self.val_f1mac(preds, y)
self.log('val_f1macro', self.val_f1mac, on_step=False, on_epoch=True)
self.val_auroc(preds, y)
self.log('val_auroc', self.val_auroc, on_step=False, on_epoch=True)
if dataloader_idx == 1:
self.log('test_in_val_loss', loss, prog_bar=True)
self.test_in_val_acc(preds, y)
self.log('test_in_val_acc', self.test_in_val_acc, on_step=False, on_epoch=True)
self.test_in_val_f1mac(preds, y)
self.log('test_in_val_f1macro', self.test_in_val_f1mac, on_step=False, on_epoch=True)
self.test_in_val_auroc(preds, y)
self.log('test_in_val_auroc', self.test_in_val_auroc, on_step=False, on_epoch=True)
def test_step(self, test_batch, batch_idx):
x, y = test_batch
preds = self.forward(x)
loss = self.loss(preds, y)
self.log('test_loss', loss, prog_bar=True)
self.test_acc(preds, y)
self.log('test_acc', self.test_acc, on_step=False, on_epoch=True)
self.test_f1mac(preds, y)
self.log('test_f1macro', self.test_f1mac, on_step=False, on_epoch=True)
self.test_auroc(preds, y)
self.log('test_auroc', self.test_auroc, on_step=False, on_epoch=True)
torch.use_deterministic_algorithms(False)
self.test_confmat(preds, y)
torch.use_deterministic_algorithms(True)
def test_epoch_end(self, outs):
self.logger.experiment['training/test_confmat'].log(str(self.test_confmat.compute())[7:-1])
class NNClassifier(BaseClassifier):
def __init__(self, nfeat, nclass, hidden=-1, lr=5e-3, weight_decay=0, dropout=0.5, use_scheduler=True, milestones=[50, 100, 150], use_weight=False, weight=None):
super().__init__(nclass=nclass)
self.save_hyperparameters()
self.encoder = nn.Identity()
self.clf = ClfBlock(nfeat=nfeat, hidden=hidden, nclass=nclass, dropout=dropout)
self.lr = lr
self.weight_decay = weight_decay
self.use_scheduler = use_scheduler
self.milestones = milestones
if use_weight:
class_weights = 10 * (1 - weight/weight.sum())
self.loss = nn.NLLLoss(weight=class_weights)
else:
self.loss = nn.NLLLoss()
class EncoderClassifier(NNClassifier):
def __init__(self, encoder, encoder_last_channel, conv_channel=-1, nclass=1, hidden=-1, lr=1e-3, weight_decay=0, dropout=0.5, nlayer_unfreeze=-1, use_scheduler=True, milestones=[50, 100, 150], use_weight=False, weight=None):
super().__init__(nfeat=conv_channel, nclass=nclass, hidden=hidden, lr=lr, dropout=dropout, use_scheduler=use_scheduler, milestones=milestones, use_weight=use_weight, weight=weight)
self.save_hyperparameters()
set_parameter_requires_grad_layered(encoder, nlayer_unfreeze)
self.encoder = nn.Sequential(encoder, nn.Conv2d(encoder_last_channel, conv_channel, 3, padding='same'), nn.AdaptiveAvgPool2d((1, 1)), nn.Flatten())
def set_parameter_requires_grad_layered(model, nlayer_unfreeze):
assert (nlayer_unfreeze == 'all' or isinstance(nlayer_unfreeze, int))
if nlayer_unfreeze != 'all':
all_modules = [module for module in model.modules() if \
len(list(module.children()))==0 and len(list(module.parameters()))>0]
for module in all_modules[:len(all_modules) - nlayer_unfreeze]:
print(f'Disable Grad for: {module}')
for param in module.parameters():
param.requires_grad = False