forked from weissercn/LHCb_PID_Compression
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Autoencoder_Utils.py
397 lines (315 loc) · 16.4 KB
/
Autoencoder_Utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# Useful functions live here.
# Importing necessary libraries
import os
import math
import string
import pickle
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import keras
from keras.layers import Input, Dense, Dropout
from keras.models import Model, Sequential
from keras.callbacks import EarlyStopping, TensorBoard
from keras import optimizers
from keras import backend as K
from sklearn import metrics
from sklearn.model_selection import train_test_split
from matplotlib.colors import LogNorm
plt.rc('text', usetex=False)
def print_features_histograms(features, target=None, save_filename=None, normed=True):
hist_params = {'normed': normed, 'bins': 60, 'alpha': 0.4}
# create the figure
fig = plt.figure(figsize=(8, 2 * math.ceil(features.shape[1] / 2.)))
for n, feature in enumerate(features):
# add sub plot on our figure
ax = fig.add_subplot(math.ceil(features.shape[1] / 2.), 2, n + 1)
# define range for histograms by cutting 1% of data from both ends
min_value, max_value = np.percentile(features[feature].dropna(), [1, 99])
if target is not None:
min_value2, max_value2 = np.percentile(target[feature].dropna(), [1, 99])
min_value, max_value = min(min_value, min_value2), max(max_value, max_value2)
min_value -= 0.1 * np.abs(max_value)
max_value += 0.2 * np.abs(max_value)
ax.hist(features[feature].dropna(), range=(min_value, max_value),
label='predicted', **hist_params)
if target is not None:
ax.hist(target[feature].dropna(), range=(min_value, max_value),
label='target', **hist_params)
ax.set_title(feature)
plt.subplots_adjust(top=0.80, bottom=0.08, left=0.10, right=0.95, hspace=0.60, wspace=0.35)
if save_filename is not None:
plt.savefig(save_filename)
def print_features_histograms_displ(features, target=None, save_dir='./', save_filename=None, normed=True):
n_in_row = 3
n_in_col = 3
n_features_left = features.shape[1]
n_features_used = 0
n_turns = 0
while n_features_left > 0:
n_features_used_now = min(n_in_row*n_in_col, n_features_left)
hist_params = {'normed': normed, 'bins': 60, 'alpha': 0.4}
# create the figure
fig = plt.figure(figsize=(8, n_in_row * math.ceil(n_features_used_now * 1. / n_in_row)))
for n in range(n_features_used, n_features_used + n_features_used_now):
feature = features.keys()[n]
# for n, feature in enumerate(features):
# add sub plot on our figure
ax = fig.add_subplot(math.ceil(n_features_used_now * 1. / n_in_row), n_in_row, n + 1 - n_features_used )
# define range for histograms by cutting 1% of data from both ends
min_value, max_value = np.percentile(features[feature].dropna(), [1, 99])
if target is not None:
min_value2, max_value2 = np.percentile(target[feature].dropna(), [1, 99])
min_value, max_value = min(min_value, min_value2), max(max_value, max_value2)
min_value -= 0.1 * np.abs(max_value)
max_value += 0.2 * np.abs(max_value)
if target is not None:
cur_idx_without_nan = pd.isnull(target[feature]) ^ True
ax.hist(features[feature][cur_idx_without_nan], range=(min_value, max_value),
label='predicted', **hist_params)
ax.hist(target[feature][cur_idx_without_nan], range=(min_value, max_value),
label='target', **hist_params)
else:
ax.hist(features[feature].dropna(), range=(min_value, max_value),
label='predicted', **hist_params)
ax.set_title(feature)
plt.subplots_adjust(top=0.80, bottom=0.08, left=0.10, right=0.95, hspace=0.60, wspace=0.35)
if save_filename is not None:
plt.savefig(os.path.join(save_dir, str(n_turns) + save_filename))
n_features_left -= n_features_used_now
n_features_used += n_features_used_now
n_turns += 1
def plot_difference_displ(
TYPE, decoded, orig, encoding_dim, TYPE_FEATURES="ALL", FTS_SCLD=False,
SetMinMax=False, Transform=True,
l_minmax=[[-15, 15], [-80, 110], [-15, 15], [-80, 80], [-0.8, 1], [-.8, .8], [-.8, .8], [-.8, .8], [-.8, .8]],
save_dir="./", save_filename=None
):
# decoded, orig
if Transform:
unscaled_decoded = fs.invtransform(decoded.values)
unscaled_orig = fs.invtransform(orig.values)
features = pd.DataFrame(unscaled_decoded, columns=orig.columns)
target = pd.DataFrame(unscaled_orig, columns=orig.columns)
else:
features = pd.DataFrame(decoded.values, columns=orig.columns)
target = pd.DataFrame(orig.values, columns=orig.columns)
n_in_row = 3
n_in_col = 3
n_features_left = features.shape[1]
n_features_used = 0
n_turns = 0
# print orig.columns
# hist_params = {'normed': True, 'bins': 60, 'alpha': 0.4}
hist_params = {'bins': 60, 'alpha': 0.4}
while n_features_left > 0:
n_features_used_now = min(n_in_row * n_in_col, n_features_left)
# create the figure
fig = plt.figure(figsize=(9, n_in_row * math.ceil(n_features_used_now * 1. / n_in_row) - 1))
n_points = len(features.index)
# print n_points
for n in range(n_features_used, n_features_used + n_features_used_now):
# for n, feature in enumerate(features):
feature = features.keys()[n]
# add sub plot on our figure
ax = fig.add_subplot(math.ceil(n_features_used_now * 1. / n_in_row), n_in_row, n + 1 - n_features_used)
# ax = fig.add_subplot(math.ceil(features.shape[1] / 3.), 3, n + 1)
# define range for histograms by cutting 1% of data from both ends
min_value, max_value = np.percentile(features[feature].dropna(), [1, 99])
if target is not None:
min_value2, max_value2 = np.percentile(target[feature].dropna(), [1, 99])
min_value, max_value = min(min_value, min_value2), max(max_value, max_value2)
min_value -= 0.1 * max_value
max_value += 0.2 * max_value
if False:
ax.hist(features[feature].dropna(), range=(min_value, max_value),
label='predicted', **hist_params)
if target is not None:
ax.hist(target[feature].dropna(), range=(min_value, max_value),
label='target', **hist_params)
# print target[feature]
# print np.abs(target[feature] - features[feature])
# h = ax.hist2d(target[feature], target[feature] - features[feature],
# bins=[15, 15], norm=LogNorm(vmin=1, vmax=n_points))
cur_idx_without_nan = pd.isnull(target[feature]) ^ True
h = ax.hist2d(target[feature][cur_idx_without_nan],
target[feature][cur_idx_without_nan] - features[feature][cur_idx_without_nan],
bins=[15, 15], norm=LogNorm(vmin=1, vmax=n_points), cmap='inferno')
if SetMinMax:
ax.set_ylim(l_minmax[n][0], l_minmax[n][1])
ax.set_xlabel(feature)
ax.set_ylabel('Delta')
if FTS_SCLD:
ax.set_xlim(-0.75, 0.85)
# ax.set_title(feature)
# plt.subplots_adjust(top=0.89, bottom=0.08, left=0.10, right=0.9, hspace=0.60, wspace=0.35)
# cbar_ax = fig.add_axes([0.1, 0.95, 0.8, 0.03])
# cbar = plt.colorbar(h[3], cax=cbar_ax, orientation='horizontal', ticks=[1, 2, 10, 20, 100, 270])
# cbar.ax.set_xticklabels([1, 2, 10, 20, 100, 270]) # horizontal colorbar
plt.subplots_adjust(top=0.95, bottom=0.10, left=0.05, right=0.83, hspace=0.3, wspace=0.2)
cbar_ax = fig.add_axes([0.88, 0.05, 0.05, 0.9])
cbar = plt.colorbar(h[3], cax=cbar_ax, ticks=[1, 10, 100, 1000, 10000, 100000, 200000])
cbar.ax.set_yticklabels(['1', '10', '100', '1k', '10k', '100k', '200k']) # horizontal colorbar
if save_filename is not None:
plt.savefig(os.path.join(save_dir, str(n_turns) + save_filename))
n_features_left -= n_features_used_now
n_features_used += n_features_used_now
n_turns += 1
def roc_curves_old(TYPE, decoded, orig, truth, encoding_dim, FIX_POS_Mu=True):
#decoded, orig
unscaled_decoded = fs.invtransform(decoded.values)
unscaled_orig = fs.invtransform(orig.values)
features = pd.DataFrame(unscaled_decoded, columns=df.columns[1:])
target = pd.DataFrame(unscaled_orig, columns=df.columns[1:])
# print(orig.columns)
hist_params = {'normed': True, 'bins': 60, 'alpha': 0.4}
# create the figure
fig = plt.figure(figsize=(14 * 2. / 3., 2. * math.ceil(features.shape[1] / 3.)))
for n, feature in enumerate(features):
# add sub plot on our figure
ax = fig.add_subplot(math.ceil(features.shape[1] / 3.), 3, n + 1)
# define range for histograms by cutting 1% of data from both ends
# print(features[feature])
# print(target[feature])
if FIX_POS_Mu:
apos_label = 13
else:
apos_label = fig_to_corr_pid[n]
fpr_dec, tpr_dec, thresholds_dec = metrics.roc_curve(truth, features[feature], pos_label=apos_label)
fpr_orig, tpr_orig, thresholds_orig = metrics.roc_curve(truth, target[feature], pos_label=apos_label)
roc_auc_dec = metrics.auc(fpr_dec, tpr_dec)
roc_auc_orig = metrics.auc(fpr_orig, tpr_orig)
ax.plot(fpr_dec , tpr_dec, "--", color='blue', label='dec %0.2f' % roc_auc_dec)
ax.plot(fpr_orig, tpr_orig, "--", color='red', label='orig %0.2f' % roc_auc_orig)
ax.legend()
ax.set_xlabel(feature +" FPR")
ax.set_ylabel('TPR')
# ax.set_title(feature)
plt.subplots_adjust(top=0.95, bottom=0.10, left=0.05, right=0.975, hspace=0.3, wspace=0.2)
plt.savefig("ROCs_{}_{}.png".format(encoding_dim, TYPE))
def create_autoencoder_aux(n_features, encoding_dim, n_aux_features=5, p_drop=0.5, n_layers=3, thickness=2):
# build encoding model using keras where we can feed in auxilliary info
inputs = Input(shape=(n_features, ), name='main_input')
# "encoded" is the encoded representation of the input
x = inputs
"""
x = Dense(2 * n_features, activation='tanh')(inputs)
x = Dense(2 * encoding_dim, activation='tanh')(x)
x = Dropout(p_drop)(x)
"""
# encoded = Dense(encoding_dim, activation='tanh')(x)
# https://keras.io/getting-started/functional-api-guide/#multi-input-and-multi-output-models
aux_inputs = Input(shape=(n_aux_features, ), name='aux_inputs')
x = keras.layers.concatenate([x, aux_inputs])
for i in range(n_layers - 1):
x = Dense(thickness * n_features, activation='tanh')(x)
x = keras.layers.concatenate([x, aux_inputs])
# x = Dropout(p_drop)(x)
x = Dense(thickness * encoding_dim, activation='tanh')(x)
x = keras.layers.concatenate([x, aux_inputs])
# x = Dropout(p_drop)(x)
encoded = Dense(encoding_dim, activation='tanh', name='encoded')(x)
# "decoded" is the lossy reconstruction of the input
x = encoded
"""
x = Dense(2*encoding_dim, activation='tanh')(encoded)
x = Dropout(p_drop)(x)
x = Dense(2*n_features, activation='tanh')(x)
"""
# decoded = Dense(n_features, activation='tanh')(x)
x = keras.layers.concatenate([x, aux_inputs])
x = Dense(thickness * encoding_dim, activation='tanh')(x)
# x = Dropout(p_drop)(x)
for i in range(n_layers - 1):
x = keras.layers.concatenate([x, aux_inputs])
x = Dense(thickness * n_features, activation='tanh')(x)
# x = Dropout(p_drop)(x)
decoded = Dense(n_features, activation='tanh')(x)
# this model maps an input to its reconstruction
autoencoder = Model([inputs, aux_inputs ], decoded)
# this model maps an input to its encoded representation
encoder = Model([inputs, aux_inputs], encoded)
if False:
# create a placeholder for an encoded (32-dimensional) input
encoded_input = Input(shape=(encoding_dim,))
# retrieve the last layer of the autoencoder model
decoder_n_layers = len(autoencoder.layers) - len(encoder.layers)
# print "decoder_n_layers : ", decoder_n_layers
decoder_layers = autoencoder.layers[-decoder_n_layers:]
decoding = encoded_input
for i in decoder_layers:
decoding= i(decoding)
# create the decoder model
decoder = Model([encoded_input, aux_inputs], decoding)
else:
decoder = K.function([encoded, aux_inputs, K.learning_phase()], [decoded])
optimizer_adam = optimizers.Adam(lr=0.001)
autoencoder.compile(loss='mse', optimizer=optimizer_adam)
#autoencoder.compile(optimizer=optimizer_adam,
# loss={'decoded': 'mse'},
# loss_weights={'decoded': 1.})
return autoencoder, encoder, decoder
def create_autoencoder_aux_skipPNN(n_features, encoding_dim, n_aux_features=5, n_pnn_features=5,
p_drop=0.5, n_layers=3, thickness=2):
# build encoding model using keras where we can feed in auxilliary info
inputs = Input(shape=(n_features, ), name='main_input')
# "encoded" is the encoded representation of the input
x = inputs
"""
x = Dense(2*n_features, activation='tanh')(inputs)
x = Dense(2*encoding_dim, activation='tanh')(x)
x = Dropout(p_drop)(x)
"""
# encoded = Dense(encoding_dim, activation='tanh')(x)
# https://keras.io/getting-started/functional-api-guide/#multi-input-and-multi-output-models
aux_inputs = Input(shape=(n_aux_features,), name='aux_inputs')
x = keras.layers.concatenate([x, aux_inputs])
for i in range(n_layers-1):
x = Dense(thickness*n_features, activation='tanh')(x)
x = keras.layers.concatenate([x, aux_inputs])
# x = Dropout(p_drop)(x)
x = Dense(thickness*encoding_dim, activation='tanh')(x)
x = keras.layers.concatenate([x, aux_inputs])
# x = Dropout(p_drop)(x)
encoded = Dense(encoding_dim, activation='tanh', name='encoded')(x)
# "decoded" is the lossy reconstruction of the input
x = encoded
"""
x = Dense(2*encoding_dim, activation='tanh')(encoded)
x = Dropout(p_drop)(x)
x = Dense(2*n_features, activation='tanh')(x)
"""
# decoded = Dense(n_features, activation='tanh')(x)
x = keras.layers.concatenate([x, aux_inputs])
x = Dense(thickness * encoding_dim, activation='tanh')(x)
# x = Dropout(p_drop)(x)
for i in range(n_layers - 1):
x = keras.layers.concatenate([x, aux_inputs])
x = Dense(thickness * (n_features + n_pnn_features), activation='tanh')(x)
# x = Dropout(p_drop)(x)
decoded = Dense(n_features, activation='tanh', name='decoded')(x)
pnn_decoded = Dense(n_pnn_features, activation='tanh', name='pnn_decoded')(x)
# this model maps an input to its reconstruction
autoencoder = Model([inputs, aux_inputs], [decoded, pnn_decoded])
# this model maps an input to its encoded representation
encoder = Model([inputs, aux_inputs], encoded)
if False:
# create a placeholder for an encoded (32-dimensional) input
encoded_input = Input(shape=(encoding_dim, ))
# retrieve the last layer of the autoencoder model
decoder_n_layers = len(autoencoder.layers) - len(encoder.layers)
# print("decoder_n_layers : ", decoder_n_layers)
decoder_layers = autoencoder.layers[-decoder_n_layers:]
decoding = encoded_input
for i in decoder_layers:
decoding= i(decoding)
# create the decoder model
decoder = Model([encoded_input, aux_inputs], decoding)
else:
decoder = K.function([encoded, aux_inputs, K.learning_phase()], [decoded, pnn_decoded])
optimizer_adam = optimizers.Adam(lr=0.001)
# autoencoder.compile(loss='mse', optimizer=optimizer_adam)
autoencoder.compile(optimizer=optimizer_adam,
loss={'decoded': 'mse', 'pnn_decoded' : 'mse'},
loss_weights={'decoded': 1., 'pnn_decoded': 1.})
return autoencoder, encoder, decoder