-
Notifications
You must be signed in to change notification settings - Fork 14
/
MLM_SFP.py
316 lines (281 loc) · 15 KB
/
MLM_SFP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import random
import time
import numpy as np
import torch
import torch.optim as optim
from torchvision import transforms, datasets
import copy
from Bio import SeqIO
import argparse
from utils.bert import get_config, BertModel, set_learned_params, BertForMaskedLM, visualize_attention, show_base_PCA, fix_params
from module import Train_Module
from dataload import DATA, MyDataset
import datetime
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from sklearn.metrics.cluster import adjusted_rand_score
import os
import time
from sklearn.metrics import normalized_mutual_info_score, adjusted_rand_score, completeness_score, homogeneity_score
import torch.nn.functional as F
from sklearn.cluster import MiniBatchKMeans, KMeans, AgglomerativeClustering, SpectralClustering
import itertools
import alignment_C as Aln_C
random.seed(10)
torch.manual_seed(1234)
np.random.seed(1234)
parser = argparse.ArgumentParser(description='RNABERT')
parser.add_argument('--mag', type=int, default=1,
help='enumerate')
parser.add_argument('--epoch', '-e', type=int, default=200,
help='Number of sweeps over the dataset to train')
parser.add_argument('--batch', '-b', type=int, default=20,
help='Number of batch size')
parser.add_argument('--maskrate', '-m', type=float, default=0.0,
help='mask rate')
parser.add_argument('--pretraining', '-pre', type=str, help='use pretrained weight')
parser.add_argument('--outputweight', type=str, help='output path for weights')
parser.add_argument('--algorithm', type=str, default="global", help='algorithm method')
parser.add_argument('--data_mlm', '-d', type=str, nargs='*', help='data for mlm training')
parser.add_argument('--data_mul', type=str, nargs='*', help='data for mul training')
parser.add_argument('--data_alignment', type=str, nargs='*', help='data for alignment test')
parser.add_argument('--data_clustering', type=str, nargs='*', help='data for clustering test')
parser.add_argument('--data_showbase', type=str, nargs='*', help='data for base embedding')
parser.add_argument('--data_embedding', type=str, nargs='*', help='data for base embedding')
parser.add_argument('--embedding_output', type=str, nargs='*', help='output file for base embedding')
parser.add_argument('--show_aln', action='store_true')
args = parser.parse_args()
batch_size = args.batch
current_time = datetime.datetime.now()
print("start...")
class TRAIN:
"""The class for controlling the training process of SFP"""
def __init__(self, config):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.module = Train_Module(config)
def model_device(self, model):
print("device: ", self.device)
print('-----start-------')
model.to(self.device)
if self.device == 'cuda':
model = torch.nn.DataParallel(model) # make parallel
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
return model
def train_MLM_SFP(self, model, optimizer, dl_MLM_SFP, num_epochs, task_type):
for epoch in range(num_epochs):
model.train()
epoch_mlm_loss = 0.0
epoch_ssl_loss = 0.0
epoch_mlm_correct = 0.0
epoch_ssl_correct = 0.0
epoch_sfp_loss=0.0
epoch_sfp_correct = 0.0
epoch_mul_loss = 0.0
iteration = 1
t_epoch_start = time.time()
t_iter_start = time.time()
data_num = 0
for batch in dl_MLM_SFP:
optimizer.zero_grad()
if task_type == "MLM" or task_type == "SFP":
low_seq_0, masked_seq_0, family_0, seq_len_0, low_seq_1, masked_seq_1, family_1, seq_len_1 = batch
elif task_type == "MUL":
low_seq_0, masked_seq_0, family_0, seq_len_0, low_seq_1, masked_seq_1, family_1, seq_len_1, common_index_0, common_index_1 = batch
masked_seq_0 = masked_seq_0.to(self.device)
low_seq_0 = low_seq_0.to(self.device)
masked_seq_1 = masked_seq_1.to(self.device)
low_seq_1 = low_seq_1.to(self.device)
masked_seq = torch.cat((masked_seq_0, masked_seq_1), axis=0)
prediction_scores, prediction_scores_ss, encoded_layers = model(masked_seq)
prediction_scores0, prediction_scores1 = torch.split(prediction_scores, int(prediction_scores.shape[0]/2))
prediction_scores_ss0, prediction_scores_ss1 = torch.split(prediction_scores_ss, int(prediction_scores_ss.shape[0]/2))
encoded_layers0, encoded_layers1 = torch.split(encoded_layers, int(encoded_layers.shape[0]/2))
loss = 0
# MLM LOSS
mlm_loss_0, mlm_correct_0 = self.module.train_MLM(low_seq_0, masked_seq_0, prediction_scores0)
mlm_loss_1, mlm_correct_1 = self.module.train_MLM(low_seq_1, masked_seq_1, prediction_scores1)
mlm_loss = (mlm_loss_0 + mlm_loss_1)/2
mlm_loss = torch.tensor(0.0) if torch.isnan(mlm_loss) else mlm_loss
mlm_correct = (mlm_correct_0 + mlm_correct_1)/2
epoch_mlm_loss += mlm_loss.item() * batch_size
epoch_mlm_correct += mlm_correct
if task_type == "MLM":
loss += mlm_loss
# SFP LOSS
if task_type == "SFP":
z0_list, z1_list = self.module.em(encoded_layers0, seq_len_0), self.module.em(encoded_layers1, seq_len_1)
sfp_loss, sfp_correct = self.module.train_SFP(low_seq_0, seq_len_0, low_seq_1, seq_len_1, family_0, family_1, z0_list, z1_list)
sfp_loss = torch.tensor(0.0) if torch.isnan(sfp_loss) else sfp_loss
epoch_sfp_loss += sfp_loss.item()* batch_size
epoch_sfp_correct += sfp_correct
loss += sfp_loss
# MULTIPLE LOSS
if task_type == "MUL":
common_index_0 = common_index_0.to(self.device)
common_index_1 = common_index_1.to(self.device)
z0_list, z1_list = self.module.em(encoded_layers0, seq_len_0), self.module.em(encoded_layers1, seq_len_1)
mul_loss = self.module.train_MUL(z0_list, z1_list, common_index_0, common_index_1, seq_len_0, seq_len_1)
mul_loss = torch.tensor(0.0) if torch.isnan(mul_loss) else mul_loss
epoch_mul_loss += mul_loss.item()
loss += mul_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
torch.cuda.empty_cache()
t_epoch_finish = time.time()
epoch_mlm_loss = epoch_mlm_loss / len(dl_MLM_SFP.dataset)
epoch_mlm_correct = epoch_mlm_correct / len(dl_MLM_SFP)
epoch_sfp_loss = epoch_sfp_loss / len(dl_MLM_SFP.dataset)
epoch_sfp_correct = epoch_sfp_correct / len(dl_MLM_SFP.dataset)
epoch_mul_loss = epoch_mul_loss
print('Epoch {}/{} | MLM Loss: {:.4f} MLM Acc: {:.4f}| SFP Loss: {:.4f} SFP Acc: {:.4f}| MUL Loss: {:.4f}| time: {:.4f} sec.'.format(epoch+1, num_epochs,
epoch_mlm_loss, epoch_mlm_correct, epoch_sfp_loss, epoch_sfp_correct, epoch_mul_loss, time.time() - t_epoch_start))
t_epoch_start = time.time()
if args.outputweight:
torch.save(model.state_dict(), args.outputweight + '{0:%m_%d_%H_%M}'.format(current_time))
torch.save(model.state_dict(), args.outputweight)
return model
# make feature vector
def make_feature(self, model, dataloader, seqs):
model.eval()
torch.backends.cudnn.benchmark = True
batch_size = dataloader.batch_size
encoding = []
for batch in dataloader:
data, label, seq_len= batch
inputs = data.to(self.device)
prediction_scores, prediction_scores_ss, encoded_layers = model(inputs)
encoding.append(encoded_layers.cpu().detach().numpy())
encoding = np.concatenate(encoding, 0)
embedding = []
for e, seq in zip(encoding, seqs):
embedding.append(e[:len(seq)].tolist())
return embedding
def validateOnCompleteTestData(self, test_loader, simirality_matrix):
# accuracy and rand index
nmi = normalized_mutual_info_score
ari = adjusted_rand_score
homo = homogeneity_score
com = completeness_score
true_labels = np.concatenate([d[1].cpu().numpy() for i,d in enumerate(test_loader)], 0)
# km = KMeans(n_clusters=len(np.unique(true_labels)), n_init=20, n_jobs=4)
# y_pred = km.fit_predict(simirality_matrix)
# ac = AgglomerativeClustering(n_clusters=len(np.unique(true_labels)), affinity='precomputed', linkage='average')
# ac = AgglomerativeClustering(n_clusters=None,affinity='precomputed', linkage='average', distance_threshold=0.45)
# y_pred = ac.fit_predict(1+ (-1 * simirality_matrix))
# y_pred = y_pred.tolist()
# true_labels = true_labels.tolist()
# import collections
# c = collections.Counter(y_pred)
# y_pred_new = []
# true_labels_new = []
# for i, j in zip(y_pred, true_labels):
# if c[i] >= 2:
# y_pred_new.append(i)
# true_labels_new.append(j)
# print(len(y_pred_new))
# y_pred = np.array(y_pred_new)
# true_labels = np.array(true_labels_new)
sc=SpectralClustering(n_clusters=len(np.unique(true_labels)))
y_pred=sc.fit(simirality_matrix).labels_
print(' '*8 + '|==> nmi: %.4f , ari: %.4f, com: %.4f, homo: %.4f <==|'
% (nmi(true_labels, y_pred), ari(true_labels, y_pred), com(true_labels, y_pred), homo(true_labels, y_pred)))
return ari(true_labels, y_pred)
def align(self, model, dl):
model.eval()
pred_match = 0
ref_match = 0
TP = 0
for batch in dl:
low_seq_0, masked_seq_0, family_0, seq_len_0, low_seq_1, masked_seq_1, family_1, seq_len_1, common_index_0, common_index_1 = batch
low_seq_0 = low_seq_0.to(self.device)
low_seq_1 = low_seq_1.to(self.device)
low_seq = torch.cat((low_seq_0, low_seq_1), axis=0)
start = time.time()
prediction_scores, prediction_scores_ss, encoded_layers = model(low_seq)
elapsed_time = time.time() - start
# print ("elapsed_time:{0}".format(elapsed_time) + "[sec]")
prediction_scores0, prediction_scores1 = torch.split(prediction_scores, int(prediction_scores.shape[0]/2))
encoded_layers0, encoded_layers1 = torch.split(encoded_layers, int(encoded_layers.shape[0]/2))
z0_list, z1_list = self.module.em(encoded_layers0, seq_len_0), self.module.em(encoded_layers1, seq_len_1)
len_TP, len_pred_match, len_ref_match = self.module.test_align(low_seq_0, low_seq_1, z0_list, z1_list, common_index_0, common_index_1, seq_len_0, seq_len_1, args.show_aln)
TP += len_TP
pred_match += len_pred_match
ref_match += len_ref_match
PPV = TP /pred_match
sens = TP / ref_match
f1 = 2 * PPV * sens/(PPV + sens)
if args.show_aln == False:
print("alignment accuracy : ", f1, "sens : ", sens, "PPV : ", PPV)
return f1
def test(self, ds, test_loader, model):
model.eval()
data_num = len(test_loader.dataset)
simirality_matrix = []
for i in range(data_num):
single_seq = MyDataset("CLU", np.tile(ds.low_seq[i],(data_num,1)), np.tile(ds.low_seq[i],(data_num,1)),np.tile(ds.family[i],(data_num,1)), np.tile(ds.seq_len[i], data_num))
single_seq = torch.utils.data.DataLoader(single_seq, batch_size, shuffle=False)
low = []
for data0, data1 in zip( test_loader, single_seq):
x0, label0, seq_len_0 = data0
x1, label1, seq_len_1 = data1
x0, label0 = x0.to("cuda"),label0.to("cuda"),
x1, label1 = x1.to("cuda"),label1.to("cuda"),
x = torch.cat((x0, x1), axis=0)
prediction_scores, prediction_scores_ss, encoded_layers = model(x)
encoded_layers0, encoded_layers1 = torch.split(encoded_layers, int(encoded_layers.shape[0]/2))
z0_list, z1_list = self.module.em(encoded_layers0, seq_len_0), self.module.em(encoded_layers1, seq_len_1)
_, logits = self.module.match(z0_list, z1_list)
low.append(torch.squeeze(logits).to('cpu').detach().numpy().copy())
simirality_matrix.append(np.concatenate(low, 0))
currentAcc = self.validateOnCompleteTestData(test_loader, np.array(simirality_matrix))
return currentAcc
def objective():
config.hidden_size = config.num_attention_heads * config.multiple
train = TRAIN(config)
model = BertModel(config)
model = BertForMaskedLM(config, model)
if args.data_mlm:
config.adam_lr = 2e-4
# if args.data_sfp:
# model = fix_params(model)
# config.adam_lr = config.adam_lr * 0.5
if args.data_mul:
# model = fix_params(model)
config.adam_lr = 1e-4
model = train.model_device(model)
if args.pretraining:
model.load_state_dict(torch.load(args.pretraining))
optimizer = optim.AdamW([{'params': model.parameters(), 'lr': config.adam_lr}])
return model , optimizer, train, config
config = get_config(file_path = "./RNA_bert_config.json")
data = DATA(args, config)
model, optimizer, train, config = objective()
#now start training
if args.data_mlm:
dl_MLM = data.load_data_MLM_SFP(args.data_mlm)
model = train.train_MLM_SFP(model, optimizer, dl_MLM, args.epoch, "MLM")
# elif args.data_sfp:
# dl_SFP = data.load_data_MLM_SFP(args.data_sfp)
# model = train.train_MLM_SFP(model, optimizer, dl_SFP, args.epoch, "SFP")
if args.data_mul:
dl_MUL = data.load_data_MUL(args.data_mul, "MUL")
model = train.train_MLM_SFP(model, optimizer, dl_MUL, args.epoch, "MUL")
if args.data_alignment:
dl_alignment = data.load_data_MUL(args.data_alignment, "MUL")
alignment_accuracy = train.align(model, dl_alignment)
elif args.data_clustering:
_, _, ds, test_dl = data.load_data_CLU(args.data_clustering)
train.test(ds, test_dl, model)
if args.data_showbase:
seqs, label, SS, ds, test_dl = data.load_data_SHOW(args.data_showbase)
features = train.make_feature(model, test_dl)
features = features.reshape(-1, features.shape[2])
show_base_PCA(features, label.reshape(-1), SS)
if args.data_embedding:
seqs, label, test_dl = data.load_data_EMB(args.data_embedding)
features = train.make_feature(model, test_dl, seqs)
for i, data_set in enumerate(args.embedding_output):
with open(data_set, 'w') as f:
for d in features:
f.write(str(d) + '\n')