-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtariff_advice.py
93 lines (73 loc) · 3.25 KB
/
tariff_advice.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import numpy as np
class TariffAdvisor:
def __init__(self):
self.weights1 = 2 * np.random.random((4, 3)) - 1
self.weights2 = 2 * np.random.random((3, 3)) - 1
self.weights3 = 2 * np.random.random((3, 3)) - 1
self.weights4 = 2 * np.random.random((3, 5)) - 1
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def sigmoid_derivative(self, x):
return x * (1 - x)
def predict(self, inputs):
#inputs = inputs.astype(float)
hidden_layer1 = self.sigmoid(np.dot(inputs, self.weights1))
hidden_layer2 = self.sigmoid(np.dot(hidden_layer1, self.weights2))
hidden_layer3 = self.sigmoid(np.dot(hidden_layer2, self.weights3))
output = self.sigmoid(np.dot(hidden_layer3, self.weights4))
return output
def convertInput(value, old_min, old_max, new_min=-1, new_max=1):
return (value - old_min) / (old_max - old_min) * (new_max - new_min) + new_min
def train(self, inputs, labels, iterations):
inputs = inputs.astype(float)
labels = labels.astype(float)
for i in range(iterations):
hidden_layer1 = self.sigmoid(np.dot(inputs, self.weights1))
hidden_layer2 = self.sigmoid(np.dot(hidden_layer1, self.weights2))
hidden_layer3 = self.sigmoid(np.dot(hidden_layer2, self.weights3))
output = self.sigmoid(np.dot(hidden_layer3, self.weights4))
error = labels - output
adjustments = error * self.sigmoid_derivative(output)
self.weights4 += np.dot(hidden_layer3.T, adjustments)
hidden_error3 = np.dot(adjustments, self.weights4.T)
hidden_adjustments3 = hidden_error3 * self.sigmoid_derivative(hidden_layer3)
self.weights3 += np.dot(hidden_layer2.T, hidden_adjustments3)
hidden_error2 = np.dot(hidden_adjustments3, self.weights3.T)
hidden_adjustments2 = hidden_error2 * self.sigmoid_derivative(hidden_layer2)
self.weights2 += np.dot(hidden_layer1.T, hidden_adjustments2)
hidden_error1 = np.dot(hidden_adjustments2, self.weights2.T)
hidden_adjustments1 = hidden_error1 * self.sigmoid_derivative(hidden_layer1)
self.weights1 += np.dot(inputs.T, hidden_adjustments1)
def load_nn():
nn = TariffAdvisor()
loaded_data = np.load("weights.npz")
nn.weights1 = loaded_data["w1"]
nn.weights2 = loaded_data["w2"]
nn.weights3 = loaded_data["w3"]
nn.weights4 = loaded_data["w4"]
return nn
def save_weights(weights):
# Save the dictionary to a file
np.savez('weights.npz', **ws)
# tests
if __name__ == "__main__":
nn = TariffAdvisor()
inputs = np.array([
[3,2,2,3],
[2,1,2,2],
[2,1,1,1],
[1,1,1,1],
[2,3,3,3] ]) - 2
labels = np.array([
[1,0,0,0,0],
[0,1,0,0,0],
[0,0,1,0,0],
[0,0,0,1,0],
[0,0,0,0,1] ])
nn.train(inputs, labels, 1000)
for i, ins in enumerate(inputs):
print(f"input: {ins}, out: {np.round(nn.predict(ins), 1)}, error: {nn.predict(ins)-labels[i]}\n")
ws = {"w1":nn.weights1,
"w2":nn.weights2,
"w3":nn.weights3,
"w4":nn.weights4}