-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPS_problem.m
57 lines (45 loc) · 1.62 KB
/
PS_problem.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
%% Reference:
% EED matlab file exchange
%% Problem formulation
cost=@(x,n) PS_cost(x,n);
constraint = @(x,d) PS_constraint(x,d);
NumO = 2; % number of objective functions
D = 6; % number of decision variables
% This program solves the economic emission dispatch dispatch with Bmn coefficients by
% quadratic programming and equal incremental cost critetion
% the elddata matrix should have 5 columns of fuel cost coefficients and plant limits.
% 1.a ($/MW^2) 2. b $/MW 3. c ($) 4.lower lomit(MW) 5.Upper limit(MW)
%no of rows denote the no of plants(n)
global elddata
% a % b % c %min %max
data=[0.15247 38.53973 756.79886 10 125
0.10587 46.15916 451.32513 10 150
0.02803 40.3965 1049.9977 35 225
0.03546 38.30553 1243.5311 35 210
0.02111 36.32782 1658.5596 130 325
0.01799 38.27041 1356.6592 125 315];
X_min = data(:,4)';
X_max = data(:,5)';
elddata = data(:,1:3);
% the emidata matrix should have 3 columns of fuel cost coefficients and plant limits.
% 1.a (Kg/MW^2) 2. b Kg/MW 3. c (Kg)
global emidata
%d %e %f
emidata=[0.00419 0.32767 13.85932
0.00419 0.32767 13.85932
0.00683 -0.54551 40.2669
0.00683 -0.54551 40.2669
0.00461 -0.51116 42.89553
0.00461 -0.51116 42.8955];
% Demand (MW)
global Pd
Pd=700;
% Loss coefficients it should be squarematrix of size nXn where n is the no
% of plants
global B
B=1e-4*[1.4 .17 .15 .19 .26 .22
.17 .6 .13 .16 .15 .2
.15 .13 .65 .17 .24 .19
.19 .16 .17 .71 .3 .25
.26 .15 .24 .3 .69 .32
.22 .2 .19 .25 .32 .85];