-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataloader.py
355 lines (301 loc) · 16.3 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
from torch.utils.data.dataset import Dataset
from torchvision import transforms
import cv2
import numpy as np
import csv
import torch
import utilities
import PIL
import math
import gzip
import os
import tqdm
# csv
# img_path,session_id,gesture_id,record,mode,label,first
class GesturesDataset(Dataset):
def __init__(self, model, csv_path, train=False, mode='depth_ir', rgb=False, data_agumentation=False, normalization_type=-1,
preprocessing_type=-1, transform_train=False, resize_dim=64, n_frames=30, tracking_data_mod=False):
super().__init__()
self.model = model
self.csv_path = csv_path
self.train = train
self.mode = mode
self.rgb = rgb
self.data_augmentation = data_agumentation
self.normalization_type = normalization_type
self.preprocessing_type = preprocessing_type
self.resize_dim = resize_dim
self.n_frames = n_frames
self.tracking_data_mod = tracking_data_mod
# self.crop_limit = crop_limit
if self.mode != 'leap_motion_tracking_data' and self.model != 'C3D':
if transform_train:
if self.mode != 'depth_z':
self.transforms = transforms.Compose([
utilities.Rescale(256),
utilities.RandomCrop(self.resize_dim),
utilities.RandomFlip(),
transforms.ToTensor()
])
else:
self.transforms = transforms.Compose([
utilities.Rescale(256),
utilities.RandomCrop(self.resize_dim),
# utilities.RandomFlip(15),
])
else:
if self.mode != 'depth_z':
self.transforms = transforms.Compose([
transforms.ToTensor()
])
else:
self.transforms = None
# inizializzaione dataset
# apertura file csv
self.list_data = []
with open(self.csv_path, 'r') as csv_in:
reader = csv.reader(csv_in)
self.list_of_rows_with_first_frame = [row for row in reader if row[4] == self.mode and row[6] == 'True']
# list_of_rows_with_same_mode = list_of_rows_with_same_mode[1:] # list_of_row[1]['mode']
csv_in.seek(0)
self.list_of_rows_with_same_mode = [row for row in reader if row[4] == self.mode]
# prenderene il 70% per validation e 10% per val e 20% per validation
# len_dataset = len(self.list_of_rows_with_first_frame)
# per calcolare la lunghezza conto il numero di sessioni (senza duplicati quindi uso set)
len_dataset_per_session = len(set([int(x[1]) for x in self.list_of_rows_with_first_frame]))
# devo dividere il train e il validation in base alla sessione
train_len = round(80 * len_dataset_per_session / 100)
# divido il dataset in train e validation per sessione
for i in range(len_dataset_per_session):
if self.train and i < train_len:
self.list_data += ([x for x in self.list_of_rows_with_first_frame if (int(x[1])) == i])
elif not self.train and i >= train_len:
self.list_data += ([x for x in self.list_of_rows_with_first_frame if (int(x[1])) == i])
# per togliere gli invalid del json in caso di rnn
if self.mode == 'leap_motion_tracking_data':
self.list_data_correct = []
self.list_records = []
for i, ff in enumerate(self.list_data):
list_of_img_of_same_record = [img[0] for img in self.list_of_rows_with_same_mode
if img[1] == ff[1] # sessione
and img[2] == ff[2] # gesture
and img[3] == ff[3]] # record
center_of_list = math.floor(len(list_of_img_of_same_record) / 2)
crop_limit = math.floor(self.n_frames / 2)
start = center_of_list - crop_limit
end = center_of_list + crop_limit
list_of_img_of_same_record_cropped = list_of_img_of_same_record[
start: end + 1 if self.n_frames % 2 == 1 else end]
valid = True
for frame in list_of_img_of_same_record_cropped:
js, j = utilities.from_json_to_list(frame)
if not js:
valid = False
break
if valid:
self.list_records.append(list_of_img_of_same_record_cropped)
self.list_data_correct.append(ff)
# creo già la clip invece di ritornare la clip di percorsi
list_of_ready_records = []
for i, record in enumerate(self.list_records):
list_of_json_frame = []
for js in record:
f_js, j = utilities.from_json_to_list(js)
if self.tracking_data_mod:
f_js = utilities.extract_features_tracking_data(f_js)
list_of_json_frame.append(f_js)
list_of_ready_records.append(list_of_json_frame)
if self.tracking_data_mod:
# incremento l'input size calcolando velocità e accelerazione
# print('ok')
list_of_ready_records_increased = []
for record in list_of_ready_records:
record = utilities.increase_input_size_per_record(record)
list_of_ready_records_increased.append(record)
list_of_ready_records = list_of_ready_records_increased
# aggiungo le label
self.list_data = []
for i in range(len(self.list_data_correct)):
self.list_data.append((list_of_ready_records[i], self.list_data_correct[i]))
if normalization_type:
# calcolo media
list_clip_to_norm = []
# if self.mode == 'depth_ir':
if not os.path.exists("mean_std_{}.npz".format(self.mode)):
print('calculating mean and std...')
if self.mode == 'leap_motion_tracking_data':
frames_stack = []
for record, info in self.list_data:
for frame in record:
frames_stack.append((frame))
# frames_stack = np.asarray([frame for frame in record for record in self.list_data[0]])
# mean unica
self.mean = np.mean(frames_stack)
self.std = np.std(frames_stack)
# mean shrec
# self.mean = np.mean(frames_stack, axis=0)
# self.std = np.std(frames_stack, axis=0)
np.savez("mean_std_{}.npz".format(self.mode), self.mean, self.std)
print('mean, std {} saved.'.format(self.mode))
else:
for i, first_img in enumerate(tqdm.tqdm(self.list_data)):
# print('clip: {}'.format(i))
list_of_img_of_same_record = [img[0] for img in self.list_of_rows_with_same_mode
if img[1] == first_img[1] # sessione
and img[2] == first_img[2] # gesture
and img[3] == first_img[3]] # record
# slice image se non facciamo lstm variabile
center_of_list = math.floor(len(list_of_img_of_same_record) / 2)
crop_limit = math.floor(self.n_frames / 2)
start = center_of_list - crop_limit
end = center_of_list + crop_limit
list_of_img_of_same_record_cropped = list_of_img_of_same_record[
start: end + 1 if self.n_frames % 2 == 1 else end]
list_img = []
if self.mode == 'leap_motion_tracking_data':
list_of_json_frame = []
for js in list_of_img_of_same_record: #not cropped because variable mode
f_js = utilities.from_json_to_list(js)
if self.tracking_data_mod:
f_js = utilities.extract_features_tracking_data(f_js)
list_img.append(np.asarray(f_js))
else:
for img_path in list_of_img_of_same_record_cropped:
if self.mode != 'depth_z':
img = cv2.imread(img_path, 0 if not self.rgb else 1)
img = cv2.resize(img, (self.resize_dim, self.resize_dim))
if not self.rgb:
img = np.expand_dims(img, axis=2)
elif self.mode == 'depth_z':
f = gzip.GzipFile(img_path, "r")
img = np.loadtxt(f)
img = cv2.resize(img, (self.resize_dim, self.resize_dim))
img = np.expand_dims(img, axis=2)
list_img.append(img)
# concateno numpy array
if self.mode != 'leap_motion_tracking_data':
img_concat = np.concatenate(list_img, axis=2)
list_clip_to_norm.append(img_concat)
else:
list_clip_to_norm.append(np.vstack(list_img))
list_clip_to_norm = np.vstack(list_clip_to_norm)
self.mean = np.mean(list_clip_to_norm)
self.std = np.std(list_clip_to_norm)
np.savez("mean_std_{}.npz".format(self.mode), self.mean, self.std)
print('mean, std {} saved.'.format(self.mode))
else: # load file
npzfile = np.load("mean_std_{}.npz".format(self.mode))
self.mean = npzfile['arr_0']
self.std = npzfile['arr_1']
print('mean, std {} loaded.'.format(self.mode))
print('dataset_initialized')
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is class_index of the target class.
"""
img_data = self.list_data[index]
if self.mode == 'leap_motion_tracking_data': # in list data cè già il record aperto
target = torch.LongTensor(np.asarray([int(img_data[1][5])]))
img_data = img_data[0]
if self.normalization_type:
img_data = (np.asarray(img_data) - self.mean) / self.std
return torch.Tensor(img_data), target
target = torch.LongTensor(np.asarray([int(img_data[5])]))
list_of_img_of_same_record = [img[0] for img in self.list_of_rows_with_same_mode
if img[1] == img_data[1] # sessione
and img[2] == img_data[2] # gesture
and img[3] == img_data[3]] # record
list_of_img_of_same_record_cropped = []
# slice image se non facciamo lstm variabile
# if self.mode != 'leap_motion_tracking_data':
center_of_list = math.floor(len(list_of_img_of_same_record) / 2)
crop_limit = math.floor(self.n_frames / 2)
start = center_of_list - crop_limit
end = center_of_list + crop_limit
list_of_img_of_same_record_cropped = list_of_img_of_same_record[
start: end + 1 if self.n_frames % 2 == 1 else end]
if self.model == 'C3D':
if self.mode == 'depth_z':
# clip = np.asarray([np.expand_dims(cv2.resize(np.loadtxt(gzip.GzipFile(frame, 'r')),
# (112, 112)), axis=2)
# for frame in list_of_img_of_same_record_cropped])
clip = []
for img_path in list_of_img_of_same_record_cropped:
f = gzip.GzipFile(img_path, "r")
img = np.loadtxt(f)
img = cv2.resize(img, (112, 112))
img = np.expand_dims(img, axis=2)
clip.append(img)
clip = np.asarray(clip)
elif self.mode == 'depth_ir':
clip = np.asarray(
[np.expand_dims(cv2.resize(cv2.imread(frame, False), (112, 112)), axis=2) for frame in
list_of_img_of_same_record_cropped])
elif self.mode == 'rgb':
if self.rgb:
clip = np.asarray(
[cv2.resize(cv2.imread(frame, self.rgb), (112, 112)) for frame in
list_of_img_of_same_record_cropped]
)
else: # gray scale
clip = np.asarray(
[np.expand_dims(cv2.resize(cv2.imread(frame, self.rgb), (112, 112)), axis=2) for frame in
list_of_img_of_same_record_cropped]
)
clip = clip.transpose([3, 0, 1, 2]) # ch, fr, h, w
clip = clip.astype(np.float32)
if self.normalization_type is not None:
clip = utilities.normalization(clip, self.mean, self.std, 1)
return clip, target
elif self.model == 'DeepConvLstm':
# if self.mode == 'depth_z':
# clip = np.array([np.repeat(np.expand_dims(cv2.resize(np.loadtxt(gzip.GzipFile(frame, 'r')),
# (self.resize_dim, self.resize_dim)), axis=2), 3, axis=2)
# for frame in list_of_img_of_same_record_cropped])
# else:
#
#
# clip = np.array([cv2.resize(cv2.imread(frame, self.rgb), (self.resize_dim, self.resize_dim)) for frame in
# list_of_img_of_same_record_cropped])
clip = utilities.create_clip(list_of_img_of_same_record=list_of_img_of_same_record, n_frames=self.n_frames,
mode=self.mode, resize_dim=self.resize_dim, DeepConvLstm=True)
if self.normalization_type is not None:
clip = utilities.normalization(clip, self.mean, self.std, 1)
# if not self.rgb:
# clip = np.expand_dims(clip, axis=-1)
# clip = clip.transpose(0, 3, 1, 2) # t, c, h, w e poi b if batch_first
clip = np.float32(clip)
return clip, target
else:
list_img = []
for img_path in list_of_img_of_same_record_cropped:
if self.mode != 'depth_z':
img = cv2.imread(img_path, 0 if not self.rgb else 1)
img = cv2.resize(img, (self.resize_dim, self.resize_dim))
if not self.rgb:
img = np.expand_dims(img, axis=2)
elif self.mode == 'depth_z':
f = gzip.GzipFile(img_path, "r")
img = np.loadtxt(f)
img = cv2.resize(img, (self.resize_dim, self.resize_dim))
img = np.expand_dims(img, axis=2)
list_img.append(img)
# concateno numpy array
img_concat = np.concatenate(list_img, axis=2)
if self.normalization_type is not None:
img_concat = utilities.normalization(img_concat, self.mean, self.std, 1).astype(np.float32)
# prima di convertire in tensore transpose
# img_concat = img_concat.transpose([2, 0, 1])
if self.transforms is not None:
img_concat = self.transforms(img_concat)
if self.mode == 'depth_z':
img_concat = img_concat.transpose([2, 0, 1])
img_concat = img_concat.astype(np.float32)
target = torch.LongTensor(np.asarray([int(img_data[5])]))
return img_concat, target
def __len__(self):
return len(self.list_data)
# return 6