-
Notifications
You must be signed in to change notification settings - Fork 3
/
utils.py
291 lines (243 loc) · 10.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import os
import sys
import time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.init as init
from sklearn import metrics
from torch.distributions import MultivariateNormal, Normal
from torch.distributions.distribution import Distribution
def get_mean_and_std(dataset):
'''Compute the mean and std value of dataset.'''
dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=2)
mean = torch.zeros(3)
std = torch.zeros(3)
print('==> Computing mean and std..')
for inputs, targets in dataloader:
for i in range(3):
mean[i] += inputs[:, i, :, :].mean()
std[i] += inputs[:, i, :, :].std()
mean.div_(len(dataset))
std.div_(len(dataset))
return mean, std
def init_params(net):
'''Init layer parameters.'''
for m in net.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal(m.weight, mode='fan_out')
if m.bias:
init.constant(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant(m.weight, 1)
init.constant(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal(m.weight, std=1e-3)
if m.bias:
init.constant(m.bias, 0)
# _, term_width = os.popen('stty size', 'r').read().split()
# term_width = int(term_width)
term_width = 12
TOTAL_BAR_LENGTH = 36.
last_time = time.time()
begin_time = last_time
def progress_bar(current, total, msg=None):
global last_time, begin_time
if current == 0:
begin_time = time.time() # Reset for new bar.
cur_len = int(TOTAL_BAR_LENGTH * current / total)
rest_len = int(TOTAL_BAR_LENGTH - cur_len) - 1
sys.stdout.write(' [')
for i in range(cur_len):
sys.stdout.write('=')
sys.stdout.write('>')
for i in range(rest_len):
sys.stdout.write('.')
sys.stdout.write(']')
cur_time = time.time()
step_time = cur_time - last_time
last_time = cur_time
tot_time = cur_time - begin_time
L = []
L.append(' Step: %s' % format_time(step_time))
L.append(' | Tot: %s' % format_time(tot_time))
if msg:
L.append(' | ' + msg)
msg = ''.join(L)
sys.stdout.write(msg)
for i in range(term_width - int(TOTAL_BAR_LENGTH) - len(msg) - 3):
sys.stdout.write(' ')
# Go back to the center of the bar.
for i in range(term_width - int(TOTAL_BAR_LENGTH / 2)):
sys.stdout.write('\b')
sys.stdout.write(' %d/%d ' % (current + 1, total))
if current < total - 1:
sys.stdout.write('\r')
else:
sys.stdout.write('\n')
sys.stdout.flush()
def format_time(seconds):
days = int(seconds / 3600 / 24)
seconds = seconds - days * 3600 * 24
hours = int(seconds / 3600)
seconds = seconds - hours * 3600
minutes = int(seconds / 60)
seconds = seconds - minutes * 60
secondsf = int(seconds)
seconds = seconds - secondsf
millis = int(seconds * 1000)
f = ''
i = 1
if days > 0:
f += str(days) + 'D'
i += 1
if hours > 0 and i <= 2:
f += str(hours) + 'h'
i += 1
if minutes > 0 and i <= 2:
f += str(minutes) + 'm'
i += 1
if secondsf > 0 and i <= 2:
f += str(secondsf) + 's'
i += 1
if millis > 0 and i <= 2:
f += str(millis) + 'ms'
i += 1
if f == '':
f = '0ms'
return f
def ROC_OOD(ood_Dent, ood_MI, ood_Ent, ood_MaxP, ood_precision, all_label,
base_Ent, base_MaxP):
print('OOD Detection!')
auroc_Dent = metrics.roc_auc_score(all_label.numpy(), ood_Dent.numpy())
auroc_MI = metrics.roc_auc_score(all_label.numpy(), ood_MI.numpy())
auroc_Ent = metrics.roc_auc_score(all_label.numpy(), ood_Ent.numpy())
auroc_MaxP = metrics.roc_auc_score(all_label.numpy(), 1 - ood_MaxP.numpy())
auroc_precision = metrics.roc_auc_score(all_label.numpy(), -ood_precision.numpy())
auroc_base_Ent = metrics.roc_auc_score(all_label.numpy(), base_Ent.numpy())
auroc_base_MaxP = metrics.roc_auc_score(all_label.numpy(), 1 - base_MaxP.numpy())
print('AUROC score of Differential Entropy is', auroc_Dent)
print('AUROC score of Mutual Information is', auroc_MI)
print('AUROC score of Total Entropy is', auroc_Ent)
print('AUROC score of MaxP is', auroc_MaxP)
print('AUROC score of precision is', auroc_precision)
print('AUROC score of Base Model Total Entropy is', auroc_base_Ent)
print('AUROC score of Base Model MaxP is', auroc_base_MaxP)
aupr_Dent = metrics.average_precision_score(all_label.numpy(), ood_Dent.numpy())
aupr_MI = metrics.average_precision_score(all_label.numpy(), ood_MI.numpy())
aupr_Ent = metrics.average_precision_score(all_label.numpy(), ood_Ent.numpy())
aupr_MaxP = metrics.average_precision_score(all_label.numpy(), 1 - ood_MaxP.numpy())
aupr_precision = metrics.average_precision_score(all_label.numpy(), -ood_precision.numpy())
aupr_base_Ent = metrics.average_precision_score(all_label.numpy(), base_Ent.numpy())
aupr_base_MaxP = metrics.average_precision_score(all_label.numpy(), 1 - base_MaxP.numpy())
print('AUPR score of Differential Entropy is', aupr_Dent)
print('AUPR score of Mutual Information is', aupr_MI)
print('AUPR score of Total Entropy is', aupr_Ent)
print('AUPR score of MaxP is', aupr_MaxP)
print('AUPR score of Precision is', aupr_precision)
print('AUPR score of Base Model Total Entropy is', aupr_base_Ent)
print('AUPR score of Base Model MaxP is', aupr_base_MaxP)
return [auroc_Ent * 100, auroc_MaxP * 100, auroc_MI * 100, auroc_Dent * 100, auroc_precision * 100], \
[aupr_Ent * 100, aupr_MaxP * 100, aupr_MI * 100, aupr_Dent * 100, aupr_precision * 100], \
[auroc_base_Ent * 100, auroc_base_MaxP * 100, aupr_base_Ent * 100, aupr_base_MaxP * 100]
def ROC_Selective(ood_Dent, ood_MI, ood_Ent, ood_MaxP, ood_precision,
base_Ent, base_MaxP,
Base_predicted, Meta_predicted):
print('Misclssification Detection!')
Meta_predicted = Meta_predicted.int()
Base_predicted = Base_predicted.int()
print(Meta_predicted.sum())
print(Base_predicted.sum())
auroc_Dent = metrics.roc_auc_score(Meta_predicted.numpy(), ood_Dent.numpy())
auroc_MI = metrics.roc_auc_score(Meta_predicted.numpy(), ood_MI.numpy())
auroc_Ent = metrics.roc_auc_score(Meta_predicted.numpy(), ood_Ent.numpy())
auroc_MaxP = metrics.roc_auc_score(Meta_predicted.numpy(), 1 - ood_MaxP.numpy())
auroc_precision = metrics.roc_auc_score(Meta_predicted.numpy(), -ood_precision.numpy())
auroc_base_Ent = metrics.roc_auc_score(Base_predicted.numpy(), base_Ent.numpy())
auroc_base_MaxP = metrics.roc_auc_score(Base_predicted.numpy(), 1 - base_MaxP.numpy())
print('AUROC score of Differential Entropy is', auroc_Dent)
print('AUROC score of Mutual Information is', auroc_MI)
print('AUROC score of Total Entropy is', auroc_Ent)
print('AUROC score of MaxP is', auroc_MaxP)
print('AUROC score of precision is', auroc_precision)
print('AUROC score of Base Model Total Entropy is', auroc_base_Ent)
print('AUROC score of Base Model MaxP is', auroc_base_MaxP)
aupr_Dent = metrics.average_precision_score(Meta_predicted.numpy(), ood_Dent.numpy())
aupr_MI = metrics.average_precision_score(Meta_predicted.numpy(), ood_MI.numpy())
aupr_Ent = metrics.average_precision_score(Meta_predicted.numpy(), ood_Ent.numpy())
aupr_MaxP = metrics.average_precision_score(Meta_predicted.numpy(), 1 - ood_MaxP.numpy())
aupr_precision = metrics.average_precision_score(Meta_predicted.numpy(), -ood_precision.numpy())
aupr_base_Ent = metrics.average_precision_score(Base_predicted.numpy(), base_Ent.numpy())
aupr_base_MaxP = metrics.average_precision_score(Base_predicted.numpy(), 1 - base_MaxP.numpy())
print('AUPR score of Differential Entropy is', aupr_Dent)
print('AUPR score of Mutual Information is', aupr_MI)
print('AUPR score of Total Entropy is', aupr_Ent)
print('AUPR score of MaxP is', aupr_MaxP)
print('AUPR score of Precision is', aupr_precision)
print('AUPR score of Base Model Total Entropy is', aupr_base_Ent)
print('AUPR score of Base Model MaxP is', aupr_base_MaxP)
return [auroc_Ent * 100, auroc_MaxP * 100, aupr_Ent * 100, aupr_MaxP * 100, auroc_base_Ent * 100,
auroc_base_MaxP * 100, aupr_base_Ent * 100, aupr_base_MaxP * 100]
def convert_to_rgb(x):
return x.convert("RGB")
# Reference: https://discuss.pytorch.org/t/kernel-density-estimation-as-loss-function/62261/8
class GaussianKDE(Distribution):
def __init__(self, X, bw):
"""
X : tensor (n, d)
`n` points with `d` dimensions to which KDE will be fit
bw : numeric
bandwidth for Gaussian kernel
"""
super(Distribution, self).__init__()
self.X = X
self.bw = bw
self.dims = X.shape[-1]
self.n = X.shape[0]
self.mvn = MultivariateNormal(loc=torch.zeros(self.dims),
covariance_matrix=torch.eye(self.dims))
def sample(self, num_samples):
idxs = (np.random.uniform(0, 1, num_samples) * self.n).astype(int)
norm = Normal(loc=self.X[idxs], scale=self.bw)
return norm.sample()
def score_samples(self, Y, X=None):
"""Returns the kernel density estimates of each point in `Y`.
Parameters
----------
Y : tensor (m, d)
`m` points with `d` dimensions for which the probability density will
be calculated
X : tensor (n, d), optional
`n` points with `d` dimensions to which KDE will be fit. Provided to
allow batch calculations in `log_prob`. By default, `X` is None and
all points used to initialize KernelDensityEstimator are included.
Returns
-------
log_probs : tensor (m)
log probability densities for each of the queried points in `Y`
"""
if X == None:
X = self.X
log_probs = ((-self.dims) * np.log(self.bw) +
self.mvn.log_prob((X.unsqueeze(1) - Y) / self.bw)).sum(dim=0) / self.n
return log_probs
def log_prob(self, Y):
"""Returns the total log probability of one or more points, `Y`, using
a Multivariate Normal kernel fit to `X` and scaled using `bw`.
Parameters
----------
Y : tensor (m, d)
`m` points with `d` dimensions for which the probability density will
be calculated
Returns
-------
log_prob : numeric
total log probability density for the queried points, `Y`
"""
X_chunks = self.X.split(1000)
Y_chunks = Y.split(1000)
log_prob = 0
for x in X_chunks:
for y in Y_chunks:
log_prob += self.score_samples(y, x).sum(dim=0)
return log_prob