-
Notifications
You must be signed in to change notification settings - Fork 4
/
utils.py
513 lines (431 loc) · 19.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
import os
import time
import torch
import numpy as np
from torch.autograd import Variable
import scipy
import cv2
import glob
import random
import math
import argparse
import PIL.Image as pil
import matplotlib as mpl
import matplotlib.cm as cm
def disp_to_depth(disp, min_depth, max_depth):
"""Convert network's sigmoid output into depth prediction
The formula for this conversion is given in the 'additional considerations'
section of the paper.
"""
min_disp = 1 / max_depth
max_disp = 1 / min_depth
scaled_disp = min_disp + (max_disp - min_disp) * disp
depth = 1 / scaled_disp
return scaled_disp, depth
def visual_img(img, folder = 'temp',name="0.png"):
scipy.misc.imsave(os.path.join(folder,name),img)
def visual_kp_in_img(img, kp, size = 4, folder = 'temp', name = "kp_in_img_0.png"):
# kp shape: objXnum_kpX2
for obj_id, obj in enumerate(kp):
b, g, r = get_class_colors(obj_id)
for xy in obj:
temp_x = int(xy[0]*img.shape[1])
temp_y = int(xy[1]*img.shape[0])
for i in range(temp_x-size, temp_x+size):
if i<0 or i > img.shape[1] -1 :continue
for j in range(temp_y-size, temp_y+size):
if j<0 or j> img.shape[0] -1 :continue
img[j][i][0] = r
img[j][i][1] = g
img[j][i][2] = b
scipy.misc.imsave(os.path.join(folder, name), img)
def get_class_colors(class_id):
colordict = {'gray': [128, 128, 128], 'silver': [192, 192, 192], 'black': [0, 0, 0],
'maroon': [128, 0, 0], 'red': [255, 0, 0], 'purple': [128, 0, 128], 'fuchsia': [255, 0, 255],
'green': [0, 128, 0],
'lime': [0, 255, 0], 'olive': [128, 128, 0], 'yellow': [255, 255, 0], 'navy': [0, 0, 128],
'blue': [0, 0, 255],
'teal': [0, 128, 128], 'aqua': [0, 255, 255], 'orange': [255, 165, 0], 'indianred': [205, 92, 92],
'lightcoral': [240, 128, 128], 'salmon': [250, 128, 114], 'darksalmon': [233, 150, 122],
'lightsalmon': [255, 160, 122], 'crimson': [220, 20, 60], 'firebrick': [178, 34, 34],
'darkred': [139, 0, 0],
'pink': [255, 192, 203], 'lightpink': [255, 182, 193], 'hotpink': [255, 105, 180],
'deeppink': [255, 20, 147],
'mediumvioletred': [199, 21, 133], 'palevioletred': [219, 112, 147], 'coral': [255, 127, 80],
'tomato': [255, 99, 71], 'orangered': [255, 69, 0], 'darkorange': [255, 140, 0], 'gold': [255, 215, 0],
'lightyellow': [255, 255, 224], 'lemonchiffon': [255, 250, 205],
'lightgoldenrodyellow': [250, 250, 210],
'papayawhip': [255, 239, 213], 'moccasin': [255, 228, 181], 'peachpuff': [255, 218, 185],
'palegoldenrod': [238, 232, 170], 'khaki': [240, 230, 140], 'darkkhaki': [189, 183, 107],
'lavender': [230, 230, 250], 'thistle': [216, 191, 216], 'plum': [221, 160, 221],
'violet': [238, 130, 238],
'orchid': [218, 112, 214], 'magenta': [255, 0, 255], 'mediumorchid': [186, 85, 211],
'mediumpurple': [147, 112, 219], 'blueviolet': [138, 43, 226], 'darkviolet': [148, 0, 211],
'darkorchid': [153, 50, 204], 'darkmagenta': [139, 0, 139], 'indigo': [75, 0, 130],
'slateblue': [106, 90, 205],
'darkslateblue': [72, 61, 139], 'mediumslateblue': [123, 104, 238], 'greenyellow': [173, 255, 47],
'chartreuse': [127, 255, 0], 'lawngreen': [124, 252, 0], 'limegreen': [50, 205, 50],
'palegreen': [152, 251, 152],
'lightgreen': [144, 238, 144], 'mediumspringgreen': [0, 250, 154], 'springgreen': [0, 255, 127],
'mediumseagreen': [60, 179, 113], 'seagreen': [46, 139, 87], 'forestgreen': [34, 139, 34],
'darkgreen': [0, 100, 0], 'yellowgreen': [154, 205, 50], 'olivedrab': [107, 142, 35],
'darkolivegreen': [85, 107, 47], 'mediumaquamarine': [102, 205, 170], 'darkseagreen': [143, 188, 143],
'lightseagreen': [32, 178, 170], 'darkcyan': [0, 139, 139], 'cyan': [0, 255, 255],
'lightcyan': [224, 255, 255],
'paleturquoise': [175, 238, 238], 'aquamarine': [127, 255, 212], 'turquoise': [64, 224, 208],
'mediumturquoise': [72, 209, 204], 'darkturquoise': [0, 206, 209], 'cadetblue': [95, 158, 160],
'steelblue': [70, 130, 180], 'lightsteelblue': [176, 196, 222], 'powderblue': [176, 224, 230],
'lightblue': [173, 216, 230], 'skyblue': [135, 206, 235], 'lightskyblue': [135, 206, 250],
'deepskyblue': [0, 191, 255], 'dodgerblue': [30, 144, 255], 'cornflowerblue': [100, 149, 237],
'royalblue': [65, 105, 225], 'mediumblue': [0, 0, 205], 'darkblue': [0, 0, 139],
'midnightblue': [25, 25, 112],
'cornsilk': [255, 248, 220], 'blanchedalmond': [255, 235, 205], 'bisque': [255, 228, 196],
'navajowhite': [255, 222, 173], 'wheat': [245, 222, 179], 'burlywood': [222, 184, 135],
'tan': [210, 180, 140],
'rosybrown': [188, 143, 143], 'sandybrown': [244, 164, 96], 'goldenrod': [218, 165, 32],
'darkgoldenrod': [184, 134, 11], 'peru': [205, 133, 63], 'chocolate': [210, 105, 30],
'saddlebrown': [139, 69, 19],
'sienna': [160, 82, 45], 'brown': [165, 42, 42], 'snow': [255, 250, 250], 'honeydew': [240, 255, 240],
'mintcream': [245, 255, 250], 'azure': [240, 255, 255], 'aliceblue': [240, 248, 255],
'ghostwhite': [248, 248, 255], 'whitesmoke': [245, 245, 245], 'seashell': [255, 245, 238],
'beige': [245, 245, 220], 'oldlace': [253, 245, 230], 'floralwhite': [255, 250, 240],
'ivory': [255, 255, 240],
'antiquewhite': [250, 235, 215], 'linen': [250, 240, 230], 'lavenderblush': [255, 240, 245],
'mistyrose': [255, 228, 225], 'gainsboro': [220, 220, 220], 'lightgrey': [211, 211, 211],
'darkgray': [169, 169, 169], 'dimgray': [105, 105, 105], 'lightslategray': [119, 136, 153],
'slategray': [112, 128, 144], 'darkslategray': [47, 79, 79], 'white': [255, 255, 255]}
colornames = list(colordict.keys())
assert (class_id < len(colornames))
r, g, b = colordict[colornames[class_id]]
return b, g, r # for OpenCV
def vertices_reprojection(vertices, rt, k):
p = np.matmul(k, np.matmul(rt[:3,0:3], vertices.T) + rt[:3,3].reshape(-1,1))
p[0] = p[0] / (p[2] + 1e-5)
p[1] = p[1] / (p[2] + 1e-5)
return p[:2].T
def convert2cpu(gpu_matrix):
return torch.FloatTensor(gpu_matrix.shape).copy_(gpu_matrix)
def convert2cpu_long(gpu_matrix):
return torch.LongTensor(gpu_matrix.shape).copy_(gpu_matrix)
def do_detect(model, de, dp, rawimg, intrinsics, bestCnt, conf_thresh, use_gpu=False):
de.eval()
dp.eval()
model.eval()
t0 = time.time()
height, width, _ = rawimg.shape
# scale
img = cv2.resize(rawimg, (model.width, model.height))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = torch.from_numpy(img.transpose(2, 0, 1)).float().div(255.0).unsqueeze(0)
# B * 3 * W * H
t1 = time.time()
if use_gpu:
img = img.cuda()
img = Variable(img)
t2 = time.time()
feature = de(img)
depth_pred = dp(feature)
disp = depth_pred[("disp", 0)]
scaled_disp, depth = disp_to_depth(disp, 0.1, 100)
out_preds = model(img+depth[0][0])
t3 = time.time()
predPose = fusion(out_preds, width, height, intrinsics, conf_thresh, 0, bestCnt)
t4 = time.time()
if True:
# if False:
print('-----------------------------------')
print(' image to tensor : %f' % (t1 - t0))
if use_gpu:
print(' tensor to cuda : %f' % (t2 - t1))
print(' predict : %f' % (t3 - t2))
print(' fusion : %f' % (t4 - t3))
print(' total : %f' % (t4 - t0))
print('-----------------------------------')
return predPose
def do_detect_all(model, rawimg, intrinsics, bestCnt, conf_thresh, use_gpu=False):
model.eval()
t0 = time.time()
height, width, _ = rawimg.shape
# scale
img = cv2.resize(rawimg, (model.width, model.height))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = torch.from_numpy(img.transpose(2, 0, 1)).float().div(255.0).unsqueeze(0)
# B * 3 * W * H
t1 = time.time()
if use_gpu:
img = img.cuda()
img = Variable(img)
t2 = time.time()
out_preds, depth = model(img)
t3 = time.time()
predPose = fusion(out_preds, width, height, intrinsics, conf_thresh, 0, bestCnt)
t4 = time.time()
if True:
# if False:
print('-----------------------------------')
print(' image to tensor : %f' % (t1 - t0))
if use_gpu:
print(' tensor to cuda : %f' % (t2 - t1))
print(' predict : %f' % (t3 - t2))
print(' fusion : %f' % (t4 - t3))
print(' total : %f' % (t4 - t0))
print('-----------------------------------')
return predPose
def do_detect_depth(model, rawimg, use_gpu=False):
model.eval()
t0 = time.time()
height, width, _ = rawimg.shape
# scale
img = cv2.resize(rawimg, (model.width, model.height))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = torch.from_numpy(img.transpose(2, 0, 1)).float().div(255.0).unsqueeze(0)
# B * 3 * W * H
t1 = time.time()
if use_gpu:
img = img.cuda()
img = Variable(img)
t2 = time.time()
out_preds, depth = model(img)
t3 = time.time()
#predPose = fusion(out_preds, width, height, intrinsics, conf_thresh, 0, bestCnt)
# Saving colormapped depth image
disp_resized_np = depth.squeeze().cpu().detach().numpy()
vmax = np.percentile(disp_resized_np, 95)
normalizer = mpl.colors.Normalize(vmin=disp_resized_np.min(), vmax=vmax)
mapper = cm.ScalarMappable(norm=normalizer, cmap='magma')
colormapped_im = (mapper.to_rgba(disp_resized_np)[:, :, :3] * 255).astype(np.uint8)
t4 = time.time()
return colormapped_im
def fusion(output, width, height, intrinsics, conf_thresh, batchIdx, bestCnt):
layerCnt = len(output)
assert(layerCnt == 2)
cls_confs = output[0][0][batchIdx]
cls_ids = output[0][1][batchIdx]
predx = output[1][0][batchIdx]
predy = output[1][1][batchIdx]
det_confs = output[1][2][batchIdx]
keypoints = output[1][3]
nH, nW, nV = predx.shape
nC = cls_ids.max() + 1
outPred = []
mx = predx.mean(axis=2) # average x positions
my = predy.mean(axis=2) # average y positions
mdConf = det_confs.mean(axis=2) # average 2D confidences
for cidx in range(nC): # loop for every class
# skip background
if cidx == 0:
continue
foremask = (cls_ids == cidx)
cidx -= 1
foreCnt = foremask.sum()
if foreCnt < 1:
continue
xs = predx[foremask]
ys = predy[foremask]
ds = det_confs[foremask]
cs = cls_confs[foremask]
centerxys = np.concatenate((mx[foremask].reshape(-1,1), my[foremask].reshape(-1,1)), 1)
# choose the item with maximum detection confidence
# actually, this will choose only one object instance for each type, this is true for OccludedLINEMOD and YCB-Video dataset
maxIdx = np.argmax(mdConf[foremask])
refxys = centerxys[maxIdx].reshape(1,-1).repeat(foreCnt, axis=0)
selected = (np.linalg.norm(centerxys - refxys, axis=1) < 0.2)
xsi = xs[selected] * width
ysi = ys[selected] * height
dsi = ds[selected]
csi = cs[selected] # confidence of selected points
if csi.mean() < conf_thresh: # valid classification probability
continue
gridCnt = len(xsi)
assert(gridCnt > 0)
# choose best N count, here N = bestCnt (default = 10)
p2d = None
p3d = None
candiBestCnt = min(gridCnt, bestCnt)
for i in range(candiBestCnt):
bestGrids = dsi.argmax(axis=0)
validmask = (dsi[bestGrids, list(range(nV))] > 0.5)
xsb = xsi[bestGrids, list(range(nV))][validmask]
ysb = ysi[bestGrids, list(range(nV))][validmask]
t2d = np.concatenate((xsb.reshape(-1, 1), ysb.reshape(-1, 1)), 1)
t3d = keypoints[cidx][validmask]
if p2d is None:
p2d = t2d
p3d = t3d
else:
p2d = np.concatenate((p2d, t2d), 0)
p3d = np.concatenate((p3d, t3d), 0)
dsi[bestGrids, list(range(nV))] = 0
if len(p3d) < 6:
continue
retval, rot, trans, inliers = cv2.solvePnPRansac(p3d, p2d, intrinsics, None, flags=cv2.SOLVEPNP_EPNP)
if not retval:
continue
R = cv2.Rodrigues(rot)[0] # convert to rotation matrix
T = trans.reshape(-1, 1)
rt = np.concatenate((R, T), 1)
outPred.append([cidx, rt, 1, None, None, None, [cidx], -1, [0], [0], None])
return outPred
def read_data_cfg(datacfg):
options = dict()
options['gpus'] = '0,1,2,3'
options['num_workers'] = '24'
with open(datacfg, 'r') as fp:
lines = fp.readlines()
for line in lines:
line = line.strip()
if len(line) > 0 and line[0] != '#' and '=' in line:
key, value = line.split('=')
key = key.strip()
value = value.strip()
options[key] = value
return options
def save_predictions(imgBaseName, predPose, object_names, outpath):
for p in predPose:
id, rt, conf, puv, pxyz, opoint, clsid, partid, cx, cy, layerId = p
path = outpath + '/' + object_names[int(id)] + '/'
if not os.path.exists(path):
os.makedirs(path)
np.savetxt(path + imgBaseName + '.txt', rt)
def visualize_predictions(predPose, image, vertex, intrinsics):
height, width, _ = image.shape
confImg = np.copy(image)
maskImg = np.zeros((height,width), np.uint8)
contourImg = np.copy(image)
for p in predPose:
outid, rt, conf, puv, pxyz, opoint, clsid, partid, cx, cy, layerId = p
# show surface reprojection
maskImg.fill(0)
if True:
# if False:
vp = vertices_reprojection(vertex[outid][:], rt, intrinsics)
for p in vp:
if p[0] != p[0] or p[1] != p[1]: # check nan
continue
if p[0] > 640 or p[1] > 480:
continue
maskImg = cv2.circle(maskImg, (int(p[0]), int(p[1])), 1, 255, -1)
confImg = cv2.circle(confImg, (int(p[0]), int(p[1])), 1, get_class_colors(outid), -1, cv2.LINE_AA)
# fill the holes
kernel = np.ones((5,5), np.uint8)
maskImg = cv2.morphologyEx(maskImg, cv2.MORPH_CLOSE, kernel)
# find contour
#contours, _ = cv2.findContours(maskImg, mode=cv2.RETR_EXTERNAL, method=cv2.CHAIN_APPROX_SIMPLE)
_, contours, _ = cv2.findContours(maskImg, mode=cv2.RETR_EXTERNAL, method=cv2.CHAIN_APPROX_SIMPLE)
contourImg = cv2.drawContours(contourImg, contours, -1, (255, 255, 255), 4, cv2.LINE_AA) # border
contourImg = cv2.drawContours(contourImg, contours, -1, get_class_colors(outid), 2, cv2.LINE_AA)
return contourImg
def transform_pred_pose(pred_dir, object_names, transformations):
objNameList = [f for f in os.listdir(pred_dir) if os.path.isdir(pred_dir + '/' + f)]
objNameList.sort()
for objName in objNameList:
objId = object_names.index(objName.lower())
obj_dir = pred_dir + '/' + objName
filelist = [f for f in os.listdir(obj_dir) if f.endswith('.txt')]
for f in filelist:
f = obj_dir + '/' + f
pred_rt = np.loadtxt(f)
pred_rt = np.matmul(pred_rt, transformations[objId])
np.savetxt(f, pred_rt)
return
def get_bbox(label):
border_list = [-1, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600, 640, 680]
img_width = 480
img_length = 640
rows = np.any(label, axis=1)
cols = np.any(label, axis=0)
rmin, rmax = np.where(rows)[0][[0, -1]]
cmin, cmax = np.where(cols)[0][[0, -1]]
rmax += 1
cmax += 1
r_b = rmax - rmin
for tt in range(len(border_list)):
if r_b > border_list[tt] and r_b < border_list[tt + 1]:
r_b = border_list[tt + 1]
break
c_b = cmax - cmin
for tt in range(len(border_list)):
if c_b > border_list[tt] and c_b < border_list[tt + 1]:
c_b = border_list[tt + 1]
break
center = [int((rmin + rmax) / 2), int((cmin + cmax) / 2)]
rmin = center[0] - int(r_b / 2)
rmax = center[0] + int(r_b / 2)
cmin = center[1] - int(c_b / 2)
cmax = center[1] + int(c_b / 2)
if rmin < 0:
delt = -rmin
rmin = 0
rmax += delt
if cmin < 0:
delt = -cmin
cmin = 0
cmax += delt
if rmax > img_width:
delt = rmax - img_width
rmax = img_width
rmin -= delt
if cmax > img_length:
delt = cmax - img_length
cmax = img_length
cmin -= delt
return rmin, rmax, cmin, cmax
def get_img_list_from(folder_path):
file_list = []
for path in glob.glob(folder_path+"/*"):
if "jpg" in path or "png" in path:
file_list.append(path)
return file_list
class meters:
"""save results and calculate average automatically
"""
def __init__(self):
self.value = 0.0000
self.counter = 0
self._reset()
def update(self, tmp):
self.value = (self.counter * self.value + tmp) /(self.counter+1)
self.counter += 1
def _reset(self):
self.value = 0.0000
self.counter = 0
def pnz(matrix):
# a help function to print all non-zero elements
return matrix[np.where(matrix != 0)]
class RandomErasing(object):
'''
Class that performs Random Erasing in Random Erasing Data Augmentation by Zhong et al.
-------------------------------------------------------------------------------------
probability: The probability that the operation will be performed.
sl: min erasing area
sh: max erasing area
r1: min aspect ratio
mean: erasing value
-------------------------------------------------------------------------------------
'''
def __init__(self, probability=0.6, sl=0.02, sh=0.08, r1=0.5, mean=(0.4914, 0.4822, 0.4465)):
self.probability = probability
self.mean = mean
self.sl = sl
self.sh = sh
self.r1 = r1
def __call__(self, img):
if random.uniform(0, 1) > self.probability:
return img
for attempt in range(100):
area = img.shape[0] * img.shape[1]
target_area = random.uniform(self.sl, self.sh) * area
aspect_ratio = random.uniform(self.r1, 1 / self.r1)
h = int(round(math.sqrt(target_area * aspect_ratio)))
w = int(round(math.sqrt(target_area / aspect_ratio)))
if w < img.shape[0] and h < img.shape[1]:
x1 = random.randint(0, img.shape[0] - h)
y1 = random.randint(0, img.shape[1] - w)
if img.shape[2] == 3:
img[x1:x1 + h, y1:y1 + w, 0] = self.mean[0]
img[x1:x1 + h, y1:y1 + w, 1] = self.mean[1]
img[x1:x1 + h, y1:y1 + w, 2] = self.mean[2]
else:
img[x1:x1 + h, y1:y1 + w, 0] = self.mean[0]
return img
return img