-
Notifications
You must be signed in to change notification settings - Fork 19
/
fast_predict2.py
65 lines (50 loc) · 2.41 KB
/
fast_predict2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
"""
Speeds up estimator.predict by preventing it from reloading the graph on each call to predict.
It does this by creating a python generator to keep the predict call open.
Usage: Just warp your estimator in a FastPredict. i.e.
classifier = FastPredict(learn.Estimator(model_fn=model_params.model_fn, model_dir=model_params.model_dir), my_input_fn)
This version supports tf 1.4 and above and can be used by pre-made Estimators like tf.estimator.DNNClassifier.
Author: Marc Stogaitis
"""
import tensorflow as tf
class FastPredict:
def __init__(self, estimator, input_fn):
self.estimator = estimator
self.first_run = True
self.closed = False
self.input_fn = input_fn
def _create_generator(self):
while not self.closed:
yield self.next_features
def predict(self, feature_batch):
""" Runs a prediction on a set of features. Calling multiple times
does *not* regenerate the graph which makes predict much faster.
feature_batch a list of list of features. IMPORTANT: If you're only classifying 1 thing,
you still need to make it a batch of 1 by wrapping it in a list (i.e. predict([my_feature]), not predict(my_feature)
"""
self.next_features = feature_batch
if self.first_run:
self.batch_size = len(feature_batch)
self.predictions = self.estimator.predict(
input_fn=self.input_fn(self._create_generator))
self.first_run = False
elif self.batch_size != len(feature_batch):
raise ValueError("All batches must be of the same size. First-batch:" + str(self.batch_size) + " This-batch:" + str(len(feature_batch)))
results = []
for _ in range(self.batch_size):
results.append(next(self.predictions))
return results
def close(self):
self.closed = True
try:
next(self.predictions)
except:
print("Exception in fast_predict. This is probably OK")
def example_input_fn(generator):
""" An example input function to pass to predict. It must take a generator as input """
def _inner_input_fn():
dataset = tf.data.Dataset().from_generator(generator, output_types=(tf.float32)).batch(1)
iterator = dataset.make_one_shot_iterator()
features = iterator.get_next()
return {'x': features}
return _inner_input_fn