-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathtrain_hybrid_gan.py
157 lines (119 loc) · 6.34 KB
/
train_hybrid_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
from itertools import count
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import random
import time
import sys
from collections import deque
from tqdm import tqdm
from model.sdf_net import SDFNet
from model.gan import Discriminator, LATENT_CODE_SIZE
from util import create_text_slice, device, standard_normal_distribution, get_voxel_coordinates
VOXEL_RESOLUTION = 32
SDF_CLIPPING = 0.1
from util import create_text_slice
from datasets import VoxelDataset
from torch.utils.data import DataLoader
generator = SDFNet()
generator.filename = 'hybrid_gan_generator.to'
discriminator = Discriminator()
discriminator.filename = 'hybrid_gan_discriminator.to'
if "continue" in sys.argv:
generator.load()
discriminator.load()
LOG_FILE_NAME = "plots/hybrid_gan_training.csv"
first_epoch = 0
if 'continue' in sys.argv:
log_file_contents = open(LOG_FILE_NAME, 'r').readlines()
first_epoch = len(log_file_contents)
log_file = open(LOG_FILE_NAME, "a" if "continue" in sys.argv else "w")
generator_optimizer = optim.Adam(generator.parameters(), lr=0.001)
discriminator_criterion = torch.nn.functional.binary_cross_entropy
discriminator_optimizer = optim.Adam(discriminator.parameters(), lr=0.00001)
show_viewer = "nogui" not in sys.argv
if show_viewer:
from rendering import MeshRenderer
viewer = MeshRenderer()
BATCH_SIZE = 8
dataset = VoxelDataset.glob('data/chairs/voxels_32/**.npy')
dataset.rescale_sdf = False
data_loader = DataLoader(dataset, shuffle=True, batch_size=BATCH_SIZE, num_workers=8)
valid_target_default = torch.ones(BATCH_SIZE, requires_grad=False).to(device)
fake_target_default = torch.zeros(BATCH_SIZE, requires_grad=False).to(device)
def sample_latent_codes(current_batch_size):
latent_codes = standard_normal_distribution.sample(sample_shape=[current_batch_size, LATENT_CODE_SIZE]).to(device)
latent_codes = latent_codes.repeat((1, 1, grid_points.shape[0])).reshape(-1, LATENT_CODE_SIZE)
return latent_codes
grid_points = get_voxel_coordinates(VOXEL_RESOLUTION, return_torch_tensor=True)
history_fake = deque(maxlen=50)
history_real = deque(maxlen=50)
def train():
for epoch in count(start=first_epoch):
batch_index = 0
epoch_start_time = time.time()
for batch in tqdm(data_loader, desc='Epoch {:d}'.format(epoch)):
try:
current_batch_size = batch.shape[0] # equals BATCH_SIZE for all batches except the last one
batch_grid_points = grid_points.repeat((current_batch_size, 1))
# train generator
generator_optimizer.zero_grad()
latent_codes = sample_latent_codes(current_batch_size)
fake_sample = generator(batch_grid_points, latent_codes)
fake_sample = fake_sample.reshape(-1, VOXEL_RESOLUTION, VOXEL_RESOLUTION, VOXEL_RESOLUTION)
if batch_index % 20 == 0 and show_viewer:
viewer.set_voxels(fake_sample[0, :, :, :].squeeze().detach().cpu().numpy())
if batch_index % 20 == 0 and "show_slice" in sys.argv:
print(create_text_slice(fake_sample[0, :, :, :] / SDF_CLIPPING))
fake_discriminator_output = discriminator(fake_sample)
fake_loss = torch.mean(-torch.log(fake_discriminator_output))
fake_loss.backward()
generator_optimizer.step()
# train discriminator on fake samples
fake_target = fake_target_default if current_batch_size == BATCH_SIZE else torch.zeros(current_batch_size, requires_grad=False).to(device)
valid_target = valid_target_default if current_batch_size == BATCH_SIZE else torch.ones(current_batch_size, requires_grad=False).to(device)
discriminator_optimizer.zero_grad()
latent_codes = sample_latent_codes(current_batch_size)
fake_sample = generator(batch_grid_points, latent_codes)
fake_sample = fake_sample.reshape(-1, VOXEL_RESOLUTION, VOXEL_RESOLUTION, VOXEL_RESOLUTION)
discriminator_output_fake = discriminator(fake_sample)
fake_loss = discriminator_criterion(discriminator_output_fake, fake_target)
fake_loss.backward()
discriminator_optimizer.step()
# train discriminator on real samples
discriminator_optimizer.zero_grad()
discriminator_output_valid = discriminator(batch.to(device))
valid_loss = discriminator_criterion(discriminator_output_valid, valid_target)
valid_loss.backward()
discriminator_optimizer.step()
history_fake.append(torch.mean(discriminator_output_fake).item())
history_real.append(torch.mean(discriminator_output_valid).item())
batch_index += 1
if "verbose" in sys.argv:
print("Epoch " + str(epoch) + ", batch " + str(batch_index) +
": prediction on fake samples: " + '{0:.4f}'.format(history_fake[-1]) +
", prediction on valid samples: " + '{0:.4f}'.format(history_real[-1]))
except KeyboardInterrupt:
if show_viewer:
viewer.stop()
return
prediction_fake = np.mean(history_fake)
prediction_real = np.mean(history_real)
print('Epoch {:d} ({:.1f}s), prediction on fake: {:.4f}, prediction on real: {:.4f}'.format(epoch, time.time() - epoch_start_time, prediction_fake, prediction_real))
if abs(prediction_fake - prediction_real) > 0.1:
print("Network diverged.")
exit()
generator.save()
discriminator.save()
generator.save(epoch=epoch)
discriminator.save(epoch=epoch)
if "show_slice" in sys.argv:
latent_code = sample_latent_codes(1)
voxels = generator(grid_points, latent_code)
voxels = voxels.reshape(VOXEL_RESOLUTION, VOXEL_RESOLUTION, VOXEL_RESOLUTION)
print(create_text_slice(voxels / SDF_CLIPPING))
log_file.write('{:d} {:.1f} {:.4f} {:.4f}\n'.format(epoch, time.time() - epoch_start_time, prediction_fake, prediction_real))
log_file.flush()
train()
log_file.close()