-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathtrain_sdf_autodecoder.py
116 lines (92 loc) · 3.89 KB
/
train_sdf_autodecoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import numpy as np
from itertools import count
import time
import random
from tqdm import tqdm
import sys
from model.sdf_net import SDFNet, LATENT_CODE_SIZE, LATENT_CODES_FILENAME
from util import device
if "nogui" not in sys.argv:
from rendering import MeshRenderer
viewer = MeshRenderer()
POINTCLOUD_SIZE = 200000
points = torch.load('data/sdf_points.to').to(device)
sdf = torch.load('data/sdf_values.to').to(device)
MODEL_COUNT = points.shape[0] // POINTCLOUD_SIZE
BATCH_SIZE = 20000
SDF_CUTOFF = 0.1
sdf.clamp_(-SDF_CUTOFF, SDF_CUTOFF)
signs = sdf.cpu().numpy() > 0
SIGMA = 0.01
LOG_FILE_NAME = "plots/sdf_net_training.csv"
sdf_net = SDFNet()
if "continue" in sys.argv:
sdf_net.load()
latent_codes = torch.load(LATENT_CODES_FILENAME).to(device)
else:
normal_distribution = torch.distributions.normal.Normal(0, 0.0001)
latent_codes = normal_distribution.sample((MODEL_COUNT, LATENT_CODE_SIZE)).to(device)
latent_codes.requires_grad = True
network_optimizer = optim.Adam(sdf_net.parameters(), lr=1e-5)
latent_code_optimizer = optim.Adam([latent_codes], lr=1e-5)
criterion = nn.MSELoss()
first_epoch = 0
if 'continue' in sys.argv:
log_file_contents = open(LOG_FILE_NAME, 'r').readlines()
first_epoch = len(log_file_contents)
log_file = open(LOG_FILE_NAME, "a" if "continue" in sys.argv else "w")
def create_batches():
indices_positive = np.nonzero(signs)[0]
indices_negative = np.nonzero(~signs)[0]
if indices_negative.shape[0] > indices_positive.shape[0]:
np.random.shuffle(indices_negative)
indices_negative = indices_negative[:indices_positive.shape[0]]
else:
np.random.shuffle(indices_positive)
indices_positive = indices_positive[:indices_negative.shape[0]]
indices = np.concatenate((indices_negative, indices_positive))
np.random.shuffle(indices)
batch_count = int(indices.shape[0] / BATCH_SIZE)
for i in range(batch_count - 1):
yield indices[i * BATCH_SIZE:(i+1)*BATCH_SIZE]
yield indices[(batch_count - 1) * BATCH_SIZE:]
def train():
for epoch in count(start=first_epoch):
epoch_start_time = time.time()
loss_values = []
batch_index = 0
for batch in tqdm(list(create_batches())):
indices = torch.tensor(batch, device = device)
model_indices = indices / POINTCLOUD_SIZE
batch_latent_codes = latent_codes[model_indices, :]
batch_points = points[indices, :]
batch_sdf = sdf[indices]
sdf_net.zero_grad()
if latent_codes.grad is not None:
latent_codes.grad.data.zero_()
output = sdf_net.forward(batch_points, batch_latent_codes)
loss = torch.mean(torch.abs(output - batch_sdf)) + SIGMA * torch.mean(torch.pow(batch_latent_codes, 2))
loss.backward()
network_optimizer.step()
latent_code_optimizer.step()
loss_values.append(loss.item())
if batch_index % 400 == 0 and "nogui" not in sys.argv:
try:
viewer.set_mesh(sdf_net.get_mesh(latent_codes[random.randrange(MODEL_COUNT), :]))
except ValueError:
pass
batch_index += 1
variance = np.var(latent_codes.detach().reshape(-1).cpu().numpy()) ** 0.5
epoch_duration = time.time() - epoch_start_time
print("Epoch {:d}, {:.1f}s. Loss: {:.8f}".format(epoch, epoch_duration, np.mean(loss_values)))
sdf_net.save()
torch.save(latent_codes, LATENT_CODES_FILENAME)
sdf_net.save(epoch=epoch)
torch.save(latent_codes, sdf_net.get_filename(epoch=epoch, filename='sdf_net_latent_codes.to'))
log_file.write('{:d} {:.1f} {:.6f} {:.6f}\n'.format(epoch, epoch_duration, np.mean(loss_values), variance))
log_file.flush()
train()