-
Notifications
You must be signed in to change notification settings - Fork 0
/
notebook.tex
executable file
·782 lines (613 loc) · 39.8 KB
/
notebook.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
% Default to the notebook output style
% Inherit from the specified cell style.
\documentclass[11pt]{article}
\usepackage[T1]{fontenc}
% Nicer default font (+ math font) than Computer Modern for most use cases
\usepackage{mathpazo}
% Basic figure setup, for now with no caption control since it's done
% automatically by Pandoc (which extracts ![](path) syntax from Markdown).
\usepackage{graphicx}
% We will generate all images so they have a width \maxwidth. This means
% that they will get their normal width if they fit onto the page, but
% are scaled down if they would overflow the margins.
\makeatletter
\def\maxwidth{\ifdim\Gin@nat@width>\linewidth\linewidth
\else\Gin@nat@width\fi}
\makeatother
\let\Oldincludegraphics\includegraphics
% Set max figure width to be 80% of text width, for now hardcoded.
\renewcommand{\includegraphics}[1]{\Oldincludegraphics[width=.8\maxwidth]{#1}}
% Ensure that by default, figures have no caption (until we provide a
% proper Figure object with a Caption API and a way to capture that
% in the conversion process - todo).
\usepackage{caption}
\DeclareCaptionLabelFormat{nolabel}{}
\captionsetup{labelformat=nolabel}
\usepackage{adjustbox} % Used to constrain images to a maximum size
\usepackage{xcolor} % Allow colors to be defined
\usepackage{enumerate} % Needed for markdown enumerations to work
\usepackage{geometry} % Used to adjust the document margins
\usepackage{amsmath} % Equations
\usepackage{amssymb} % Equations
\usepackage{textcomp} % defines textquotesingle
% Hack from http://tex.stackexchange.com/a/47451/13684:
\At
Document{%
\def\PYZsq{\textquotesingle}% Upright quotes in Pygmentized code
}
\usepackage{upquote} % Upright quotes for verbatim code
\usepackage{eurosym} % defines \euro
\usepackage[mathletters]{ucs} % Extended unicode (utf-8) support
\usepackage[utf8x]{inputenc} % Allow utf-8 characters in the tex document
\usepackage{fancyvrb} % verbatim replacement that allows latex
\usepackage{grffile} % extends the file name processing of package graphics
% to support a larger range
% The hyperref package gives us a pdf with properly built
% internal navigation ('pdf bookmarks' for the table of contents,
% internal cross-reference links, web links for URLs, etc.)
\usepackage{hyperref}
\usepackage{longtable} % longtable support required by pandoc >1.10
\usepackage{booktabs} % table support for pandoc > 1.12.2
\usepackage[inline]{enumitem} % IRkernel/repr support (it uses the enumerate* environment)
\usepackage[normalem]{ulem} % ulem is needed to support strikethroughs (\sout)
% normalem makes italics be italics, not underlines
% Colors for the hyperref package
\definecolor{urlcolor}{rgb}{0,.145,.698}
\definecolor{linkcolor}{rgb}{.71,0.21,0.01}
\definecolor{citecolor}{rgb}{.12,.54,.11}
% ANSI colors
\definecolor{ansi-black}{HTML}{3E424D}
\definecolor{ansi-black-intense}{HTML}{282C36}
\definecolor{ansi-red}{HTML}{E75C58}
\definecolor{ansi-red-intense}{HTML}{B22B31}
\definecolor{ansi-green}{HTML}{00A250}
\definecolor{ansi-green-intense}{HTML}{007427}
\definecolor{ansi-yellow}{HTML}{DDB62B}
\definecolor{ansi-yellow-intense}{HTML}{B27D12}
\definecolor{ansi-blue}{HTML}{208FFB}
\definecolor{ansi-blue-intense}{HTML}{0065CA}
\definecolor{ansi-magenta}{HTML}{D160C4}
\definecolor{ansi-magenta-intense}{HTML}{A03196}
\definecolor{ansi-cyan}{HTML}{60C6C8}
\definecolor{ansi-cyan-intense}{HTML}{258F8F}
\definecolor{ansi-white}{HTML}{C5C1B4}
\definecolor{ansi-white-intense}{HTML}{A1A6B2}
% commands and environments needed by pandoc snippets
% extracted from the output of `pandoc -s`
\providecommand{\tightlist}{%
\setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}
\DefineVerbatimEnvironment{Highlighting}{Verbatim}{commandchars=\\\{\}}
% Add ',fontsize=\small' for more characters per line
\newenvironment{Shaded}{}{}
\newcommand{\KeywordTok}[1]{\textcolor[rgb]{0.00,0.44,0.13}{\textbf{{#1}}}}
\newcommand{\DataTypeTok}[1]{\textcolor[rgb]{0.56,0.13,0.00}{{#1}}}
\newcommand{\DecValTok}[1]{\textcolor[rgb]{0.25,0.63,0.44}{{#1}}}
\newcommand{\BaseNTok}[1]{\textcolor[rgb]{0.25,0.63,0.44}{{#1}}}
\newcommand{\FloatTok}[1]{\textcolor[rgb]{0.25,0.63,0.44}{{#1}}}
\newcommand{\CharTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{{#1}}}
\newcommand{\StringTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{{#1}}}
\newcommand{\CommentTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textit{{#1}}}}
\newcommand{\OtherTok}[1]{\textcolor[rgb]{0.00,0.44,0.13}{{#1}}}
\newcommand{\AlertTok}[1]{\textcolor[rgb]{1.00,0.00,0.00}{\textbf{{#1}}}}
\newcommand{\FunctionTok}[1]{\textcolor[rgb]{0.02,0.16,0.49}{{#1}}}
\newcommand{\RegionMarkerTok}[1]{{#1}}
\newcommand{\ErrorTok}[1]{\textcolor[rgb]{1.00,0.00,0.00}{\textbf{{#1}}}}
\newcommand{\NormalTok}[1]{{#1}}
% Additional commands for more recent versions of Pandoc
\newcommand{\ConstantTok}[1]{\textcolor[rgb]{0.53,0.00,0.00}{{#1}}}
\newcommand{\SpecialCharTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{{#1}}}
\newcommand{\VerbatimStringTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{{#1}}}
\newcommand{\SpecialStringTok}[1]{\textcolor[rgb]{0.73,0.40,0.53}{{#1}}}
\newcommand{\ImportTok}[1]{{#1}}
\newcommand{\DocumentationTok}[1]{\textcolor[rgb]{0.73,0.13,0.13}{\textit{{#1}}}}
\newcommand{\AnnotationTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{{#1}}}}}
\newcommand{\CommentVarTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{{#1}}}}}
\newcommand{\VariableTok}[1]{\textcolor[rgb]{0.10,0.09,0.49}{{#1}}}
\newcommand{\ControlFlowTok}[1]{\textcolor[rgb]{0.00,0.44,0.13}{\textbf{{#1}}}}
\newcommand{\OperatorTok}[1]{\textcolor[rgb]{0.40,0.40,0.40}{{#1}}}
\newcommand{\BuiltInTok}[1]{{#1}}
\newcommand{\ExtensionTok}[1]{{#1}}
\newcommand{\PreprocessorTok}[1]{\textcolor[rgb]{0.74,0.48,0.00}{{#1}}}
\newcommand{\AttributeTok}[1]{\textcolor[rgb]{0.49,0.56,0.16}{{#1}}}
\newcommand{\InformationTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{{#1}}}}}
\newcommand{\WarningTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{{#1}}}}}
% Define a nice break command that doesn't care if a line doesn't already
% exist.
\def\br{\hspace*{\fill} \\* }
% Math Jax compatability definitions
\def\gt{>}
\def\lt{<}
% Document parameters
\title{ML01-Reg-Simple-Linear-Regression-Co2-py-v1}
% Pygments definitions
\makeatletter
\def\PY@reset{\let\PY@it=\relax \let\PY@bf=\relax%
\let\PY@ul=\relax \let\PY@tc=\relax%
\let\PY@bc=\relax \let\PY@ff=\relax}
\def\PY@tok#1{\csname PY@tok@#1\endcsname}
\def\PY@toks#1+{\ifx\relax#1\empty\else%
\PY@tok{#1}\expandafter\PY@toks\fi}
\def\PY@do#1{\PY@bc{\PY@tc{\PY@ul{%
\PY@it{\PY@bf{\PY@ff{#1}}}}}}}
\def\PY#1#2{\PY@reset\PY@toks#1+\relax+\PY@do{#2}}
\expandafter\def\csname PY@tok@w\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.73,0.73}{##1}}}
\expandafter\def\csname PY@tok@c\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}}
\expandafter\def\csname PY@tok@cp\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.74,0.48,0.00}{##1}}}
\expandafter\def\csname PY@tok@k\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
\expandafter\def\csname PY@tok@kp\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
\expandafter\def\csname PY@tok@kt\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.69,0.00,0.25}{##1}}}
\expandafter\def\csname PY@tok@o\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
\expandafter\def\csname PY@tok@ow\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.67,0.13,1.00}{##1}}}
\expandafter\def\csname PY@tok@nb\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
\expandafter\def\csname PY@tok@nf\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,1.00}{##1}}}
\expandafter\def\csname PY@tok@nc\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,1.00}{##1}}}
\expandafter\def\csname PY@tok@nn\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,1.00}{##1}}}
\expandafter\def\csname PY@tok@ne\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.82,0.25,0.23}{##1}}}
\expandafter\def\csname PY@tok@nv\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}}
\expandafter\def\csname PY@tok@no\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.53,0.00,0.00}{##1}}}
\expandafter\def\csname PY@tok@nl\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.63,0.63,0.00}{##1}}}
\expandafter\def\csname PY@tok@ni\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.60,0.60,0.60}{##1}}}
\expandafter\def\csname PY@tok@na\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.49,0.56,0.16}{##1}}}
\expandafter\def\csname PY@tok@nt\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
\expandafter\def\csname PY@tok@nd\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.67,0.13,1.00}{##1}}}
\expandafter\def\csname PY@tok@s\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
\expandafter\def\csname PY@tok@sd\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
\expandafter\def\csname PY@tok@si\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.73,0.40,0.53}{##1}}}
\expandafter\def\csname PY@tok@se\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.73,0.40,0.13}{##1}}}
\expandafter\def\csname PY@tok@sr\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.40,0.53}{##1}}}
\expandafter\def\csname PY@tok@ss\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}}
\expandafter\def\csname PY@tok@sx\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
\expandafter\def\csname PY@tok@m\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
\expandafter\def\csname PY@tok@gh\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,0.50}{##1}}}
\expandafter\def\csname PY@tok@gu\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.50,0.00,0.50}{##1}}}
\expandafter\def\csname PY@tok@gd\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.63,0.00,0.00}{##1}}}
\expandafter\def\csname PY@tok@gi\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.63,0.00}{##1}}}
\expandafter\def\csname PY@tok@gr\endcsname{\def\PY@tc##1{\textcolor[rgb]{1.00,0.00,0.00}{##1}}}
\expandafter\def\csname PY@tok@ge\endcsname{\let\PY@it=\textit}
\expandafter\def\csname PY@tok@gs\endcsname{\let\PY@bf=\textbf}
\expandafter\def\csname PY@tok@gp\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,0.50}{##1}}}
\expandafter\def\csname PY@tok@go\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.53,0.53,0.53}{##1}}}
\expandafter\def\csname PY@tok@gt\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.27,0.87}{##1}}}
\expandafter\def\csname PY@tok@err\endcsname{\def\PY@bc##1{\setlength{\fboxsep}{0pt}\fcolorbox[rgb]{1.00,0.00,0.00}{1,1,1}{\strut ##1}}}
\expandafter\def\csname PY@tok@kc\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
\expandafter\def\csname PY@tok@kd\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
\expandafter\def\csname PY@tok@kn\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
\expandafter\def\csname PY@tok@kr\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
\expandafter\def\csname PY@tok@bp\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
\expandafter\def\csname PY@tok@fm\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,1.00}{##1}}}
\expandafter\def\csname PY@tok@vc\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}}
\expandafter\def\csname PY@tok@vg\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}}
\expandafter\def\csname PY@tok@vi\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}}
\expandafter\def\csname PY@tok@vm\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}}
\expandafter\def\csname PY@tok@sa\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
\expandafter\def\csname PY@tok@sb\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
\expandafter\def\csname PY@tok@sc\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
\expandafter\def\csname PY@tok@dl\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
\expandafter\def\csname PY@tok@s2\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
\expandafter\def\csname PY@tok@sh\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
\expandafter\def\csname PY@tok@s1\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
\expandafter\def\csname PY@tok@mb\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
\expandafter\def\csname PY@tok@mf\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
\expandafter\def\csname PY@tok@mh\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
\expandafter\def\csname PY@tok@mi\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
\expandafter\def\csname PY@tok@il\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
\expandafter\def\csname PY@tok@mo\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
\expandafter\def\csname PY@tok@ch\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}}
\expandafter\def\csname PY@tok@cm\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}}
\expandafter\def\csname PY@tok@cpf\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}}
\expandafter\def\csname PY@tok@c1\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}}
\expandafter\def\csname PY@tok@cs\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}}
\def\PYZbs{\char`\\}
\def\PYZus{\char`\_}
\def\PYZob{\char`\{}
\def\PYZcb{\char`\}}
\def\PYZca{\char`\^}
\def\PYZam{\char`\&}
\def\PYZlt{\char`\<}
\def\PYZgt{\char`\>}
\def\PYZsh{\char`\#}
\def\PYZpc{\char`\%}
\def\PYZdl{\char`\$}
\def\PYZhy{\char`\-}
\def\PYZsq{\char`\'}
\def\PYZdq{\char`\"}
\def\PYZti{\char`\~}
% for compatibility with earlier versions
\def\PYZat{@}
\def\PYZlb{[}
\def\PYZrb{]}
\makeatother
% Exact colors from NB
\definecolor{incolor}{rgb}{0.0, 0.0, 0.5}
\definecolor{outcolor}{rgb}{0.545, 0.0, 0.0}
% Prevent overflowing lines due to hard-to-break entities
\sloppy
% Setup hyperref package
\hypersetup{
breaklinks=true, % so long urls are correctly broken across lines
colorlinks=true,
urlcolor=urlcolor,
linkcolor=linkcolor,
citecolor=citecolor,
}
% Slightly bigger margins than the latex defaults
\geometry{verbose,tmargin=1in,bmargin=1in,lmargin=1in,rmargin=1in}
\begin{document}
\maketitle
\#
Simple Linear Regression
\hypertarget{about-this-notebook}{%
\paragraph{About this Notebook}\label{about-this-notebook}}
In this notebook, we learn how to use scikit-learn to implement simple
linear regression. We download a dataset that is related to fuel
consumption and Carbon dioxide emission of cars. Then, we split our data
into training and test sets, create a model using training set, Evaluate
your model using test set, and finally use model to predict unknown
value
\hypertarget{importing-needed-packages}{%
\subsubsection{Importing Needed
packages}\label{importing-needed-packages}}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}4}]:} \PY{k+kn}{import} \PY{n+nn}{matplotlib}\PY{n+nn}{.}\PY{n+nn}{pyplot} \PY{k}{as} \PY{n+nn}{plt}
\PY{k+kn}{import} \PY{n+nn}{pandas} \PY{k}{as} \PY{n+nn}{pd}
\PY{k+kn}{import} \PY{n+nn}{pylab} \PY{k}{as} \PY{n+nn}{pl}
\PY{k+kn}{import} \PY{n+nn}{numpy} \PY{k}{as} \PY{n+nn}{np}
\PY{o}{\PYZpc{}}\PY{k}{matplotlib} inline
\end{Verbatim}
\hypertarget{downloading-data}{%
\subsubsection{Downloading Data}\label{downloading-data}}
To download the data, we will use !wget to download it from IBM Object
Storage.
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}5}]:} \PY{o}{!}wget \PYZhy{}O \PY{l+s+s2}{\PYZdq{}./data/FuelConsumption.csv\PYZdq{}} https://s3\PYZhy{}api.us\PYZhy{}geo.objectstorage.softlayer.net/cf\PYZhy{}courses\PYZhy{}data/CognitiveClass/ML0101ENv3/labs/FuelConsumptionCo2.csv
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
--2019-05-04 17:05:34-- https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/FuelConsumptionCo2.csv
Resolving s3-api.us-geo.objectstorage.softlayer.net (s3-api.us-geo.objectstorage.softlayer.net){\ldots} 67.228.254.193
Connecting to s3-api.us-geo.objectstorage.softlayer.net (s3-api.us-geo.objectstorage.softlayer.net)|67.228.254.193|:443{\ldots} connected.
HTTP request sent, awaiting response{\ldots} 200 OK
Length: 72629 (71K) [text/csv]
Saving to: ‘./data/FuelConsumption.csv’
./data/FuelConsumpt 100\%[===================>] 70.93K --.-KB/s in 0.04s
2019-05-04 17:05:34 (1.81 MB/s) - ‘./data/FuelConsumption.csv’ saved [72629/72629]
\end{Verbatim}
\textbf{Did you know?} When it comes to Machine Learning, you will
likely be working with large datasets. As a business, where can you host
your data? IBM is offering a unique opportunity for businesses, with 10
Tb of IBM Cloud Object Storage:
\href{http://cocl.us/ML0101EN-IBM-Offer-CC}{Sign up now for free}
\hypertarget{understanding-the-data}{%
\subsection{Understanding the Data}\label{understanding-the-data}}
\hypertarget{fuelconsumption.csv}{%
\subsubsection{\texorpdfstring{\texttt{FuelConsumption.csv}:}{FuelConsumption.csv:}}\label{fuelconsumption.csv}}
We have downloaded a fuel consumption dataset,
\textbf{\texttt{FuelConsumption.csv}}, which contains model-specific
fuel consumption ratings and estimated carbon dioxide emissions for new
light-duty vehicles for retail sale in Canada.
\href{http://open.canada.ca/data/en/dataset/98f1a129-f628-4ce4-b24d-6f16bf24dd64}{Dataset
source}
\begin{itemize}
\tightlist
\item
\textbf{MODELYEAR} e.g.~2014
\item
\textbf{MAKE} e.g.~Acura
\item
\textbf{MODEL} e.g.~ILX
\item
\textbf{VEHICLE CLASS} e.g.~SUV
\item
\textbf{ENGINE SIZE} e.g.~4.7
\item
\textbf{CYLINDERS} e.g 6
\item
\textbf{TRANSMISSION} e.g.~A6
\item
\textbf{FUEL CONSUMPTION in CITY(L/100 km)} e.g.~9.9
\item
\textbf{FUEL CONSUMPTION in HWY (L/100 km)} e.g.~8.9
\item
\textbf{FUEL CONSUMPTION COMB (L/100 km)} e.g.~9.2
\item
\textbf{CO2 EMISSIONS (g/km)} e.g.~182 --\textgreater{} low
--\textgreater{} 0
\end{itemize}
\hypertarget{reading-the-data-in}{%
\subsection{Reading the data in}\label{reading-the-data-in}}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}6}]:} \PY{n}{df} \PY{o}{=} \PY{n}{pd}\PY{o}{.}\PY{n}{read\PYZus{}csv}\PY{p}{(}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{./data/FuelConsumption.csv}\PY{l+s+s2}{\PYZdq{}}\PY{p}{)}
\PY{c+c1}{\PYZsh{} take a look at the dataset}
\PY{n}{df}\PY{o}{.}\PY{n}{head}\PY{p}{(}\PY{p}{)}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{outcolor}Out[{\color{outcolor}6}]:} MODELYEAR MAKE MODEL VEHICLECLASS ENGINESIZE CYLINDERS \textbackslash{}
0 2014 ACURA ILX COMPACT 2.0 4
1 2014 ACURA ILX COMPACT 2.4 4
2 2014 ACURA ILX HYBRID COMPACT 1.5 4
3 2014 ACURA MDX 4WD SUV - SMALL 3.5 6
4 2014 ACURA RDX AWD SUV - SMALL 3.5 6
TRANSMISSION FUELTYPE FUELCONSUMPTION\_CITY FUELCONSUMPTION\_HWY \textbackslash{}
0 AS5 Z 9.9 6.7
1 M6 Z 11.2 7.7
2 AV7 Z 6.0 5.8
3 AS6 Z 12.7 9.1
4 AS6 Z 12.1 8.7
FUELCONSUMPTION\_COMB FUELCONSUMPTION\_COMB\_MPG CO2EMISSIONS
0 8.5 33 196
1 9.6 29 221
2 5.9 48 136
3 11.1 25 255
4 10.6 27 244
\end{Verbatim}
\hypertarget{data-exploration}{%
\subsubsection{Data Exploration}\label{data-exploration}}
Lets first have a descriptive exploration on our data.
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}7}]:} \PY{c+c1}{\PYZsh{} summarize the data}
\PY{n}{df}\PY{o}{.}\PY{n}{describe}\PY{p}{(}\PY{p}{)}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{outcolor}Out[{\color{outcolor}7}]:} MODELYEAR ENGINESIZE CYLINDERS FUELCONSUMPTION\_CITY \textbackslash{}
count 1067.0 1067.000000 1067.000000 1067.000000
mean 2014.0 3.346298 5.794752 13.296532
std 0.0 1.415895 1.797447 4.101253
min 2014.0 1.000000 3.000000 4.600000
25\% 2014.0 2.000000 4.000000 10.250000
50\% 2014.0 3.400000 6.000000 12.600000
75\% 2014.0 4.300000 8.000000 15.550000
max 2014.0 8.400000 12.000000 30.200000
FUELCONSUMPTION\_HWY FUELCONSUMPTION\_COMB FUELCONSUMPTION\_COMB\_MPG \textbackslash{}
count 1067.000000 1067.000000 1067.000000
mean 9.474602 11.580881 26.441425
std 2.794510 3.485595 7.468702
min 4.900000 4.700000 11.000000
25\% 7.500000 9.000000 21.000000
50\% 8.800000 10.900000 26.000000
75\% 10.850000 13.350000 31.000000
max 20.500000 25.800000 60.000000
CO2EMISSIONS
count 1067.000000
mean 256.228679
std 63.372304
min 108.000000
25\% 207.000000
50\% 251.000000
75\% 294.000000
max 488.000000
\end{Verbatim}
Lets select some features to explore more.
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}8}]:} \PY{n}{cdf} \PY{o}{=} \PY{n}{df}\PY{p}{[}\PY{p}{[}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{ENGINESIZE}\PY{l+s+s1}{\PYZsq{}}\PY{p}{,}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{CYLINDERS}\PY{l+s+s1}{\PYZsq{}}\PY{p}{,}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{FUELCONSUMPTION\PYZus{}COMB}\PY{l+s+s1}{\PYZsq{}}\PY{p}{,}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{CO2EMISSIONS}\PY{l+s+s1}{\PYZsq{}}\PY{p}{]}\PY{p}{]}
\PY{n}{cdf}\PY{o}{.}\PY{n}{head}\PY{p}{(}\PY{l+m+mi}{9}\PY{p}{)}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{outcolor}Out[{\color{outcolor}8}]:} ENGINESIZE CYLINDERS FUELCONSUMPTION\_COMB CO2EMISSIONS
0 2.0 4 8.5 196
1 2.4 4 9.6 221
2 1.5 4 5.9 136
3 3.5 6 11.1 255
4 3.5 6 10.6 244
5 3.5 6 10.0 230
6 3.5 6 10.1 232
7 3.7 6 11.1 255
8 3.7 6 11.6 267
\end{Verbatim}
we can plot each of these fearues:
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}9}]:} \PY{n}{viz} \PY{o}{=} \PY{n}{cdf}\PY{p}{[}\PY{p}{[}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{CYLINDERS}\PY{l+s+s1}{\PYZsq{}}\PY{p}{,}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{ENGINESIZE}\PY{l+s+s1}{\PYZsq{}}\PY{p}{,}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{CO2EMISSIONS}\PY{l+s+s1}{\PYZsq{}}\PY{p}{,}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{FUELCONSUMPTION\PYZus{}COMB}\PY{l+s+s1}{\PYZsq{}}\PY{p}{]}\PY{p}{]}
\PY{n}{viz}\PY{o}{.}\PY{n}{hist}\PY{p}{(}\PY{p}{)}
\PY{n}{plt}\PY{o}{.}\PY{n}{show}\PY{p}{(}\PY{p}{)}
\end{Verbatim}
\begin{center}
\adjustimage{max size={0.9\linewidth}{0.9\paperheight}}{output_14_0.png}
\end{center}
{ \hspace*{\fill} \\}
Now, lets plot each of these features vs the Emission, to see how linear
is their relation:
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}10}]:} \PY{n}{plt}\PY{o}{.}\PY{n}{scatter}\PY{p}{(}\PY{n}{cdf}\PY{o}{.}\PY{n}{FUELCONSUMPTION\PYZus{}COMB}\PY{p}{,} \PY{n}{cdf}\PY{o}{.}\PY{n}{CO2EMISSIONS}\PY{p}{,} \PY{n}{color}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{blue}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
\PY{n}{plt}\PY{o}{.}\PY{n}{xlabel}\PY{p}{(}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{FUELCONSUMPTION\PYZus{}COMB}\PY{l+s+s2}{\PYZdq{}}\PY{p}{)}
\PY{n}{plt}\PY{o}{.}\PY{n}{ylabel}\PY{p}{(}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{Emission}\PY{l+s+s2}{\PYZdq{}}\PY{p}{)}
\PY{n}{plt}\PY{o}{.}\PY{n}{show}\PY{p}{(}\PY{p}{)}
\end{Verbatim}
\begin{center}
\adjustimage{max size={0.9\linewidth}{0.9\paperheight}}{output_16_0.png}
\end{center}
{ \hspace*{\fill} \\}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}11}]:} \PY{n}{plt}\PY{o}{.}\PY{n}{scatter}\PY{p}{(}\PY{n}{cdf}\PY{o}{.}\PY{n}{ENGINESIZE}\PY{p}{,} \PY{n}{cdf}\PY{o}{.}\PY{n}{CO2EMISSIONS}\PY{p}{,} \PY{n}{color}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{blue}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
\PY{n}{plt}\PY{o}{.}\PY{n}{xlabel}\PY{p}{(}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{Engine size}\PY{l+s+s2}{\PYZdq{}}\PY{p}{)}
\PY{n}{plt}\PY{o}{.}\PY{n}{ylabel}\PY{p}{(}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{Emission}\PY{l+s+s2}{\PYZdq{}}\PY{p}{)}
\PY{n}{plt}\PY{o}{.}\PY{n}{show}\PY{p}{(}\PY{p}{)}
\end{Verbatim}
\begin{center}
\adjustimage{max size={0.9\linewidth}{0.9\paperheight}}{output_17_0.png}
\end{center}
{ \hspace*{\fill} \\}
\hypertarget{practice}{%
\subsection{Practice}\label{practice}}
plot \textbf{CYLINDER} vs the Emission, to see how linear is their
relation:
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}12}]:} \PY{c+c1}{\PYZsh{} write your code here}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}13}]:} \PY{c+c1}{\PYZsh{} Double\PYZhy{}click \PYZus{}\PYZus{}here\PYZus{}\PYZus{} for the solution.}
\PY{n}{plt}\PY{o}{.}\PY{n}{scatter}\PY{p}{(}\PY{n}{cdf}\PY{o}{.}\PY{n}{CYLINDERS}\PY{p}{,} \PY{n}{cdf}\PY{o}{.}\PY{n}{CO2EMISSIONS}\PY{p}{,} \PY{n}{color}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{blue}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
\PY{n}{plt}\PY{o}{.}\PY{n}{xlabel}\PY{p}{(}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{Cylinders}\PY{l+s+s2}{\PYZdq{}}\PY{p}{)}
\PY{n}{plt}\PY{o}{.}\PY{n}{ylabel}\PY{p}{(}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{Emission}\PY{l+s+s2}{\PYZdq{}}\PY{p}{)}
\PY{n}{plt}\PY{o}{.}\PY{n}{show}\PY{p}{(}\PY{p}{)}
\end{Verbatim}
\begin{center}
\adjustimage{max size={0.9\linewidth}{0.9\paperheight}}{output_20_0.png}
\end{center}
{ \hspace*{\fill} \\}
\hypertarget{creating-train-and-test-dataset}{%
\paragraph{Creating train and test
dataset}\label{creating-train-and-test-dataset}}
Train/Test Split involves splitting the dataset into training and
testing sets respectively, which are mutually exclusive. After which,
you train with the training set and test with the testing set. This will
provide a more accurate evaluation on out-of-sample accuracy because the
testing dataset is not part of the dataset that have been used to train
the data. It is more realistic for real world problems.
This means that we know the outcome of each data point in this dataset,
making it great to test with! And since this data has not been used to
train the model, the model has no knowledge of the outcome of these data
points. So, in essence, it is truly an out-of-sample testing.
Lets split our dataset into train and test sets, 80\% of the entire data
for training, and the 20\% for testing. We create a mask to select
random rows using \textbf{np.random.rand()} function:
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}14}]:} \PY{n}{np}\PY{o}{.}\PY{n}{random}\PY{o}{.}\PY{n}{rand}\PY{p}{(}\PY{n+nb}{len}\PY{p}{(}\PY{n}{df}\PY{p}{)}\PY{p}{)}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{outcolor}Out[{\color{outcolor}14}]:} array([ 0.40822998, 0.54672013, 0.59269407, {\ldots}, 0.56986627,
0.70155421, 0.86429307])
\end{Verbatim}
\hypertarget{intereesting-way-to-split-data-in-training-and-testing.}{%
\subsubsection{intereesting way to split data in training and
testing.}\label{intereesting-way-to-split-data-in-training-and-testing.}}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}15}]:} \PY{n}{msk} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{random}\PY{o}{.}\PY{n}{rand}\PY{p}{(}\PY{n+nb}{len}\PY{p}{(}\PY{n}{df}\PY{p}{)}\PY{p}{)} \PY{o}{\PYZlt{}} \PY{l+m+mf}{0.8}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}16}]:} \PY{n}{msk}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{outcolor}Out[{\color{outcolor}16}]:} array([False, False, False, {\ldots}, True, True, True], dtype=bool)
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}17}]:} \PY{n}{train} \PY{o}{=} \PY{n}{cdf}\PY{p}{[}\PY{n}{msk}\PY{p}{]}
\PY{n}{test} \PY{o}{=} \PY{n}{cdf}\PY{p}{[}\PY{o}{\PYZti{}}\PY{n}{msk}\PY{p}{]}
\end{Verbatim}
\hypertarget{simple-regression-model}{%
\subsubsection{Simple Regression Model}\label{simple-regression-model}}
Linear Regression fits a linear model with coefficients B = (B1,
\ldots{}, Bn) to minimize the `residual sum of squares' between the
independent x in the dataset, and the dependent y by the linear
approximation.
\hypertarget{train-data-distribution}{%
\paragraph{Train data distribution}\label{train-data-distribution}}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}18}]:} \PY{n}{plt}\PY{o}{.}\PY{n}{scatter}\PY{p}{(}\PY{n}{train}\PY{o}{.}\PY{n}{ENGINESIZE}\PY{p}{,} \PY{n}{train}\PY{o}{.}\PY{n}{CO2EMISSIONS}\PY{p}{,} \PY{n}{color}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{blue}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
\PY{n}{plt}\PY{o}{.}\PY{n}{xlabel}\PY{p}{(}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{Engine size}\PY{l+s+s2}{\PYZdq{}}\PY{p}{)}
\PY{n}{plt}\PY{o}{.}\PY{n}{ylabel}\PY{p}{(}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{Emission}\PY{l+s+s2}{\PYZdq{}}\PY{p}{)}
\PY{n}{plt}\PY{o}{.}\PY{n}{show}\PY{p}{(}\PY{p}{)}
\end{Verbatim}
\begin{center}
\adjustimage{max size={0.9\linewidth}{0.9\paperheight}}{output_29_0.png}
\end{center}
{ \hspace*{\fill} \\}
\hypertarget{modeling}{%
\paragraph{Modeling}\label{modeling}}
Using sklearn package to model data.
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}19}]:} \PY{k+kn}{from} \PY{n+nn}{sklearn} \PY{k}{import} \PY{n}{linear\PYZus{}model}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}20}]:} \PY{c+c1}{\PYZsh{} initialize thee modeel object }
\PY{n}{regr} \PY{o}{=} \PY{n}{linear\PYZus{}model}\PY{o}{.}\PY{n}{LinearRegression}\PY{p}{(}\PY{p}{)}
\PY{c+c1}{\PYZsh{} prepare input data as number arrays}
\PY{n}{train\PYZus{}x} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{asanyarray}\PY{p}{(}\PY{n}{train}\PY{p}{[}\PY{p}{[}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{ENGINESIZE}\PY{l+s+s1}{\PYZsq{}}\PY{p}{]}\PY{p}{]}\PY{p}{)}
\PY{n}{train\PYZus{}y} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{asanyarray}\PY{p}{(}\PY{n}{train}\PY{p}{[}\PY{p}{[}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{CO2EMISSIONS}\PY{l+s+s1}{\PYZsq{}}\PY{p}{]}\PY{p}{]}\PY{p}{)}
\PY{c+c1}{\PYZsh{} fit thee model, this is done inplace}
\PY{n}{regr}\PY{o}{.}\PY{n}{fit} \PY{p}{(}\PY{n}{train\PYZus{}x}\PY{p}{,} \PY{n}{train\PYZus{}y}\PY{p}{)}
\PY{c+c1}{\PYZsh{} get the coefficients}
\PY{n+nb}{print} \PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{Coefficients: }\PY{l+s+s1}{\PYZsq{}}\PY{p}{,} \PY{n}{regr}\PY{o}{.}\PY{n}{coef\PYZus{}}\PY{p}{)}
\PY{n+nb}{print} \PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{Intercept: }\PY{l+s+s1}{\PYZsq{}}\PY{p}{,}\PY{n}{regr}\PY{o}{.}\PY{n}{intercept\PYZus{}}\PY{p}{)}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
Coefficients: [[ 38.36444348]]
Intercept: [ 127.61527093]
\end{Verbatim}
As mentioned before, \textbf{Coefficient} and \textbf{Intercept} in the
simple linear regression, are the parameters of the fit line. Given that
it is a simple linear regression, with only 2 parameters, and knowing
that the parameters are the intercept and slope of the line, sklearn can
estimate them directly from our data. Notice that all of the data must
be available to traverse and calculate the parameters.
\hypertarget{plot-outputs}{%
\paragraph{Plot outputs}\label{plot-outputs}}
we can plot the fit line over the data:
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}21}]:} \PY{n}{plt}\PY{o}{.}\PY{n}{scatter}\PY{p}{(}\PY{n}{train}\PY{o}{.}\PY{n}{ENGINESIZE}\PY{p}{,} \PY{n}{train}\PY{o}{.}\PY{n}{CO2EMISSIONS}\PY{p}{,} \PY{n}{color}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{blue}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{outcolor}Out[{\color{outcolor}21}]:} <matplotlib.collections.PathCollection at 0x7f500ca41940>
\end{Verbatim}
\begin{center}
\adjustimage{max size={0.9\linewidth}{0.9\paperheight}}{output_36_1.png}
\end{center}
{ \hspace*{\fill} \\}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}22}]:} \PY{n}{plt}\PY{o}{.}\PY{n}{scatter}\PY{p}{(}\PY{n}{train}\PY{o}{.}\PY{n}{ENGINESIZE}\PY{p}{,} \PY{n}{train}\PY{o}{.}\PY{n}{CO2EMISSIONS}\PY{p}{,} \PY{n}{color}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{blue}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
\PY{n}{plt}\PY{o}{.}\PY{n}{plot}\PY{p}{(}\PY{n}{train\PYZus{}x}\PY{p}{,} \PY{n}{regr}\PY{o}{.}\PY{n}{coef\PYZus{}}\PY{p}{[}\PY{l+m+mi}{0}\PY{p}{]}\PY{p}{[}\PY{l+m+mi}{0}\PY{p}{]}\PY{o}{*}\PY{n}{train\PYZus{}x} \PY{o}{+} \PY{n}{regr}\PY{o}{.}\PY{n}{intercept\PYZus{}}\PY{p}{[}\PY{l+m+mi}{0}\PY{p}{]}\PY{p}{,} \PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{\PYZhy{}r}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
\PY{n}{plt}\PY{o}{.}\PY{n}{xlabel}\PY{p}{(}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{Engine size}\PY{l+s+s2}{\PYZdq{}}\PY{p}{)}
\PY{n}{plt}\PY{o}{.}\PY{n}{ylabel}\PY{p}{(}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{Emission}\PY{l+s+s2}{\PYZdq{}}\PY{p}{)}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
{\color{outcolor}Out[{\color{outcolor}22}]:} Text(0,0.5,'Emission')
\end{Verbatim}
\begin{center}
\adjustimage{max size={0.9\linewidth}{0.9\paperheight}}{output_37_1.png}
\end{center}
{ \hspace*{\fill} \\}
\hypertarget{evaluation}{%
\paragraph{Evaluation}\label{evaluation}}
we compare the actual values and predicted values to calculate the
accuracy of a regression model. Evaluation metrics provide a key role in
the development of a model, as it provides insight to areas that require
improvement.
There are different model evaluation metrics, lets use MSE here to
calculate the accuracy of our model based on the test set: - Mean
absolute error: It is the mean of the absolute value of the errors. This
is the easiest of the metrics to understand since it's just average
error. - Mean Squared Error (MSE): Mean Squared Error (MSE) is the mean
of the squared error. It's more popular than Mean absolute error because
the focus is geared more towards large errors. This is due to the
squared term exponentially increasing larger errors in comparison to
smaller ones. - Root Mean Squared Error (RMSE). - R-squared is not
error, but is a popular metric for accuracy of your model. It represents
how close the data are to the fitted regression line. The higher the
R-squared, the better the model fits your data. Best possible score is
1.0 and it can be negative (because the model can be arbitrarily worse).
\begin{Verbatim}[commandchars=\\\{\}]
{\color{incolor}In [{\color{incolor}23}]:} \PY{k+kn}{from} \PY{n+nn}{sklearn}\PY{n+nn}{.}\PY{n+nn}{metrics} \PY{k}{import} \PY{n}{r2\PYZus{}score}
\PY{n}{test\PYZus{}x} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{asanyarray}\PY{p}{(}\PY{n}{test}\PY{p}{[}\PY{p}{[}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{ENGINESIZE}\PY{l+s+s1}{\PYZsq{}}\PY{p}{]}\PY{p}{]}\PY{p}{)}
\PY{n}{test\PYZus{}y} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{asanyarray}\PY{p}{(}\PY{n}{test}\PY{p}{[}\PY{p}{[}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{CO2EMISSIONS}\PY{l+s+s1}{\PYZsq{}}\PY{p}{]}\PY{p}{]}\PY{p}{)}
\PY{n}{test\PYZus{}y\PYZus{}} \PY{o}{=} \PY{n}{regr}\PY{o}{.}\PY{n}{predict}\PY{p}{(}\PY{n}{test\PYZus{}x}\PY{p}{)}
\PY{n+nb}{print}\PY{p}{(}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{Mean absolute error: }\PY{l+s+si}{\PYZpc{}.2f}\PY{l+s+s2}{\PYZdq{}} \PY{o}{\PYZpc{}} \PY{n}{np}\PY{o}{.}\PY{n}{mean}\PY{p}{(}\PY{n}{np}\PY{o}{.}\PY{n}{absolute}\PY{p}{(}\PY{n}{test\PYZus{}y\PYZus{}} \PY{o}{\PYZhy{}} \PY{n}{test\PYZus{}y}\PY{p}{)}\PY{p}{)}\PY{p}{)}
\PY{n+nb}{print}\PY{p}{(}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{Residual sum of squares (MSE): }\PY{l+s+si}{\PYZpc{}.2f}\PY{l+s+s2}{\PYZdq{}} \PY{o}{\PYZpc{}} \PY{n}{np}\PY{o}{.}\PY{n}{mean}\PY{p}{(}\PY{p}{(}\PY{n}{test\PYZus{}y\PYZus{}} \PY{o}{\PYZhy{}} \PY{n}{test\PYZus{}y}\PY{p}{)} \PY{o}{*}\PY{o}{*} \PY{l+m+mi}{2}\PY{p}{)}\PY{p}{)}
\PY{n+nb}{print}\PY{p}{(}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{R2\PYZhy{}score: }\PY{l+s+si}{\PYZpc{}.2f}\PY{l+s+s2}{\PYZdq{}} \PY{o}{\PYZpc{}} \PY{n}{r2\PYZus{}score}\PY{p}{(}\PY{n}{test\PYZus{}y\PYZus{}} \PY{p}{,} \PY{n}{test\PYZus{}y}\PY{p}{)} \PY{p}{)}
\end{Verbatim}
\begin{Verbatim}[commandchars=\\\{\}]
Mean absolute error: 24.54
Residual sum of squares (MSE): 1055.78
R2-score: 0.63
\end{Verbatim}
\hypertarget{want-to-learn-more}{%
\subsection{Want to learn more?}\label{want-to-learn-more}}
IBM SPSS Modeler is a comprehensive analytics platform that has many
machine learning algorithms. It has been designed to bring predictive
intelligence to decisions made by individuals, by groups, by systems --
by your enterprise as a whole. A free trial is available through this
course, available here: \href{http://cocl.us/ML0101EN-SPSSModeler}{SPSS
Modeler}.
Also, you can use Watson Studio to run these notebooks faster with
bigger datasets. Watson Studio is IBM's leading cloud solution for data
scientists, built by data scientists. With Jupyter notebooks, RStudio,
Apache Spark and popular libraries pre-packaged in the cloud, Watson
Studio enables data scientists to collaborate on their projects without
having to install anything. Join the fast-growing community of Watson
Studio users today with a free account at
\href{https://cocl.us/ML0101EN_DSX}{Watson Studio}
\hypertarget{thanks-for-completing-this-lesson}{%
\subsubsection{Thanks for completing this
lesson!}\label{thanks-for-completing-this-lesson}}
Notebook created by: Saeed Aghabozorgi
Copyright © 2018 \href{https://cocl.us/DX0108EN_CC}{Cognitive Class}.
This notebook and its source code are released under the terms of the
\href{https://bigdatauniversity.com/mit-license/}{MIT License}.
% Add a bibliography block to the postdoc
\end{document}